Optimal Criterion for the Scale-Up Production of Schizophyllan in the Stirred Tank Reactor

  • KWAK, JUNG-KI (Institute for Biotechnology, Technical University of Berlin) ;
  • KOO, JAE-GUEN (College of Ocean Science and Technology, Kunsan University) ;
  • PARK, SUNG-WOO (College of Ocean Science and Technology, Kunsan University) ;
  • CHO, MAN-GI (Engineering Research Center, Dongseo University) ;
  • KANG, BYEONG-CHUL (Engineering Research Center, Dongseo University) ;
  • RAINER BUCHHOLZ (Institute for Biotechnology, Technical University of Berlin) ;
  • PETER GOETZ (Institute for Biotechnology, Technical University of Berlin)
  • Published : 2005.02.01

Abstract

Optimal criterion for the scale-up production of schizophyllan, a fungal polysaccharide secreted by Schizophyllum commune, was investigated. For the production of the polysaccharide in a 150-l bioreactor, the culture conditions optimized in a 15-l bioreactor were applied to a 150-l bioreactor with scale-up process, by changing impeller speed and airflow rate. The optimized impeller speed in the 15-l bioreactor was 50 rpm in a technical medium based on barley. For establishment of the scale-up process, 3 kinds of criteria were used while the gas throughput number was kept constant, as follows; constant volume-related power input, constant tip speed of stirrer, and constant Reynolds number. In the 150-l bioreactor, the highest values for the maximum specific growth rate (1.17/day) and productivity (0.63 g/L${\cdot}$day) were achieved in the culture condition from constant volumerelated power input criterion.

Keywords

References

  1. Engstad, R. E., B. Robertsen, and E. Frivoid. 1992. Yeast glucan induced increase in activity of lysozyme and complement-mediated heamolytic activity in Atlantic salmon blood. Fish Shellfish Immunol. 2: 287- 297 https://doi.org/10.1016/S1050-4648(06)80033-1
  2. Fincher, G. B. 1975. Morphology and chemical composition of barley endosperm cell walls. J. Inst. Brew. 81: 116 https://doi.org/10.1002/j.2050-0416.1975.tb03672.x
  3. Goetz, P. 1994. Mikrobielle produktion und aufarbeitung des polysaccharids schizophyllan; methoden der biotechnologie. Gustav Fisher 182- 186
  4. Grisel, M. and G. Muller. 1998. Rheological properties of the schizophyllan-borax system. Macromolecules 31: 4277-4281 https://doi.org/10.1021/ma970485k
  5. Kikumoto, S., T. Miyajirna, S. Yoshizumi, S. Fusimoto, and K. Kimura. 1970. Polysaccharide produced by Schirophyllum commune. Formation and some properties of an extracellular polysaccharide. Nippon Nogei Kagaku Kaishi 44: 337 - 342 https://doi.org/10.1271/nogeikagaku1924.44.337
  6. Kim, J.-M., J.-E. Shin, M. J. Han, S.-H. Park, and D.-H. Kim. 2003. Inhibitory effect of ginseng saponins and polysaccharides on infection and vacuolation of Helicobacter pylori. J. Microbiol. Biotechnol. 13: 706- 709
  7. Kim, S. K., C.-G. Lee, and H. S. Yun. 2003. Heavy metal adsorption characteristics of extracellular polysaccharide produced by Zoogloea ramigera grown on various carbon sources. J. Microbiol. Biotechnol. 13: 745- 750
  8. Kwak, J. K., J. H. Park, J. S. Lee, P. Goetz, and M. G. Cho. 1999. Production of extracellular polysaccharide by Monilinia fructigena for aquaculture. J. Fish. Sci. Tech. 2: 182- 188
  9. Lee, J. H., J. H. Kim, M. R. Kim, S. M. Lim, S. W. Nam, J. W. Lee, and S. K. Kim. 2002. Effect of dissolved oxygen concentration and pH on the mass production of high molecular weight pullulan by Aureobasidium pullulans. J. Microbiol. Biotechnol. 12: 1s-7s
  10. Nienow, A. W. 1990. Agitators for mycelial fermentation. Trends Biotechnol. 8: 224- 233 https://doi.org/10.1016/0167-7799(90)90180-6
  11. Rau, R.-J., K. Muller, K. Cordes, and J. Klein. 1990. Process and molecular data of branches 1,3-${\beta}$-D-glucan in comparison with xanthan. Bioproc. Eng. 5: 89- 93 https://doi.org/10.1007/BF00589151
  12. Rau, U., E. Gura, E. Olszewski, and F. Wagner. 1992. Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. J. Industrial Microbiol. 9: 19- 26 https://doi.org/10.1007/BF01576364
  13. Rorstad, G., P. Aasjord, and B. Robertsen. 1993. Adjuvant effect of yeast glucan in vaccines against furunculosis in atlantic salmon (Salmo salar L.). Fish Shellfish Immunol. 3: 179-190 https://doi.org/10.1006/fsim.1993.1018
  14. Santamaria, F, F Reyes, and R. Lahoz. 1978. Extracellular glucan containing (13)- and (16)-linkages isolated from Moniliniafructigena. J. Gen. Microbiol. 109: 287- 293 https://doi.org/10.1099/00221287-109-2-287
  15. Schilling, B. M., U. Rau, T. Maier, and P. Frankhauser. 1999. Modeling and scale-up of the unsterile scleroglucan production process with Sclerotium rolfsii ATCC 15205. Bioprocess Bioeng. 20: 195- 201
  16. Sung, H. H., G. Kou, and Y. L. Song. 1994. Vibriosis resistance induced by glucan treatment in tiger shrimp (Penaeus monodon). Fish Pathology 29(1): 11- 17 https://doi.org/10.3147/jsfp.29.11
  17. Theander, O. and E. A. Westerlund. 1986. Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber. J. Agric. Food Chem. 34: 330 https://doi.org/10.1021/jf00068a045
  18. Williams, D. L., A. Mueller, and W. Browder. 1996. Glucan-based macrophage stimulators. A review of their antiinfective potential. Clinical Immunotherapy 5: 392- 399 https://doi.org/10.1007/BF03259335
  19. Yuchun, W. and B. McNeil. 1996. Scleroglucan. Crit. Rev. Biotechnol.16(3): 185-215 https://doi.org/10.3109/07388559609147421
  20. Zhang, X.-H., H.-B. Hu, Y.-L. Tang, R.-S. Huang, J.-F Luo, and B.-K. Hur. 2002. The hepatoprotective effects of polysaccharides isolated from submerged fermentation of Ganoderma lucidum. J. Microbiol. Biotechnol. 12: 367-370