Electrochemical Control of Metabolic Flux of Weissella kimchii sk10: Neutral Red Immobilized in Cytoplasmic Membrane as Electron Channel

  • PARK, SUN-MI (Department of Biological Engineering, Seokyeong University) ;
  • KANG, HYE-SUN (Department of Biological Engineering, Seokyeong University) ;
  • PARK, DAE-WON (Division of Water Environment and Remediation, KIST) ;
  • PARK, DOO-HYUN (Department of Biological Engineering, Seokyeong University)
  • Published : 2005.02.01

Abstract

Electrochemical control of the metabolic flux of W. kimchii sk10 on glucose and pyruvate was studied. The growing cell of W. kimchii sk10 produced 87.4 mM lactate, 69.3 mM ethanol, and 4.9mM lactate from 83.1mM glucose under oxidation condition of the anode compartment, but 98.9 mM lactate, 84.3mM ethanol, and 0.2 mM acetate were produced from 90.8 mM glucose under reduction condition of the cathode compartment for 24 h, respectively. The resting cell of W. kimchii sk10 produced 15.9 mM lactate and 15.2 mM acetate from 32.1 mM pyruvate under oxidation condition of the anode compartment, and 71.3 mM lactate and 3.8 mM acetate from 79.8mM pyruvate under reduction condition of the cathode compartment. The redox balance (NADH/$NAD^+$) of metabolites electrochemically produced from pyruvate was 1.05 and 18.76 under oxidation and reduction conditions, respectively. On the basis of these results, we suggest that the neutral red (NR) immobilized in bacterial membrane can function as an electron channel for the electron transfer between electrode and cytoplasm without dissipation of membrane potential, and that the bacterial fermentation of W. kimchii sk10 can be shifted to oxidized or reduced pathways by the electrochemical oxidation or reduction, respectively.

Keywords

References

  1. Cecchini, G., C. R. Thompson, B. A. Ackrell, D. J. Westenberg, N. Dean, and R. P. Gunsalus. 1986. Oxidation of reduced meanquinone by the fumarate reductase complex in Escherichia coli requires the hydrophobic FrdD peptide. Proc. Natl. Acad. Sci. USA 83: 8898- 8902 https://doi.org/10.1073/pnas.83.23.8898
  2. Collins, M. D., J. Samelis, J. Metaxopoulos, and S. Wallbanks. 1993. Taxonomic studies on some Leuconostoc-like organisms from fermented sausages: Description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75: 595- 603 https://doi.org/10.1111/j.1365-2672.1993.tb01600.x
  3. Dickie, P. and J. Weiner. 1979. Purification and characterization of membrane-bound fumarate reductase from anaerobically grown Escherichia coli. Can. J. Biochem. 57: 813- 821 https://doi.org/10.1139/v79-134
  4. Girbal, L., I. Vasconcelos, A. Silvie Saint, and P. Soucaille. 1995. How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol. Rev. 16: 151-162 https://doi.org/10.1111/j.1574-6976.1995.tb00163.x
  5. Hong, S. H., S. Y. Moon, and S. Y. Lee. 2003. Prediction of maximum yields of metabolites and optimal pathways for their production by metabolic flux analysis. J. Microbiol. Biotechnol. 13: 571- 577
  6. Hongo, M. and M. Iwahara. 1979. Determination of electroenergizing conditions for L-glutamic acid fermentation. Agric. Biol. Chem. 43B: 2083- 2086 https://doi.org/10.1271/bbb1961.43.2083
  7. Hongo, M. and M. Iwahara. 1979. Application of electronenergizing method to L-glutamic acid fermentation. Agric. Biol. Chem. 43A: 2075- 2081 https://doi.org/10.1271/bbb1961.43.2075
  8. Kang, H. S. and D. H. Park. 2004. Biocatalytic oxidationreduction of pyruvate and ethanol by Weissella kimchii sk10 under aerobic and anaerobic condition. J. Microbiol. Biotechnol. 14: 914-918
  9. Kemner, J. M. and J. G. Zeikus. 1992. Purification and characterization of membrane-bound hydrogenase from Methanosarcina barkeri MS. Arch. Microbiol. 161: 47- 54 https://doi.org/10.1007/BF00248892
  10. Kim, B. H. and J. G. Zeikus. 1992. Hydrogen metabolism in Clostridium acetobutylicum fermentation. J. Microbiol. Biotechnol. 2: 2771- 2776
  11. Kim, T. W., J. Y. Lee, S. H. Jung, Y. M. Kim, J. S. Jo, D. K. Chung, H. J. Lee, and H. Y. Kim. 2002. Identification and distribution of predominant lactic acid bacteria in kimchi, a Korean traditional fermented food. J. Microbiol. Biotechnol. 12: 635- 642
  12. Kim, T. W., S. H. Jung, J. Y. Lee, S. K. Choi, S. H. Park, J. S. Jo, and H. Y. Kim. 2003. Identification of lactic acid bacteria in kimchi using SDS-PAGE profiles of whole cell proteins. J. Microbiol. Biotechnol. 13: 119- 124
  13. Kotner, C., F. Lauterbach, D. Tripier, G. Unden, and A. Kroger. 1990. Wolinella succinogenes fumarate reductase contains a dihaem cytochrome b. Mol. Microbiol. 4: 855- 860 https://doi.org/10.1111/j.1365-2958.1990.tb00657.x
  14. Lee, J. W., A. Goel, M. M. Ataai, and M. M. Domach. 2002. Flux regulation patterns and energy audit of E. coli B/r and K-12. J. Microbiol. Biotechnol. 12: 258- 267
  15. Lee, Y. J., K. H. Cho, and Y. J. Kim. 2003. The membranebound NADH: Ubiquinone oxidoreductase in the aerobic respiratory chain of marine bacterium Pseudomonas nautical. J. Microbiol. Biotechnol. 13: 225- 229
  16. Millard, C. S., Y. P. Chao, J. C. Liao, and M. I. Donnelly. 1996. Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl. Environ. Microbiol. 62: 1808- 1810
  17. Miyawaki, O. and T. Yano. 1992. Electrochemical bioreactor with regeneration of $NAD^{+}$ by rotating graphite disk electrode with PMS absorbed. Enzyme Microb. Technol 14: 474- 478 https://doi.org/10.1016/0141-0229(92)90140-J
  18. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403- 2410
  19. Park, D. H. and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292- 1297 https://doi.org/10.1128/AEM.66.4.1292-1297.2000
  20. Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing from microbial degradation. Biotechnol. Bioeng, 81: 348- 355 https://doi.org/10.1002/bit.10501
  21. Park, S. M. and D. H. Park. 2004. Metabolic flux shift of Weissella kimchii sk10 grown under aerobic conditions. J. Microbiol. Biotechnol.14: 919-923
  22. Samuelov, N. S., R. Lamed, S. Lowe, and J. G. Zeikus. 1991. Influence of $CO_{2}-HCO^{-}_{3}$ levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succinidiproducens. Appl. Environ. Microbiol. 57: 3013- 3019
  23. Sanchez, S., A. Arratia, R. Cordova. H. Gomez, and R. Schrebler. 1995. Electron transport in biological processes. II. Electrochemical behavior of Q10 immersed in a phospholipid matrix added on a pyrolytic graphite electrode. Bioelectrochem. Bioenerg, 36: 67-71 https://doi.org/10.1016/0302-4598(94)01726-H
  24. Schlereth, D. D. and V. M. Fernandez. 1992. Direct electron transfer between Alcaligenes eutrophus Z-1 hydrogenase and glassy carbon electrodes. Bioelectrochem. Bioenerg, 28: 473- 482 https://doi.org/10.1016/0302-4598(92)80035-F
  25. Sucheta, A., R. Cammack, J. H. Weiner, and F. A. Armstrong. 1993. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observation of redox centers and their participation in rapid catalytic electron transport. Biochemistry 32: 5455- 5465 https://doi.org/10.1021/bi00071a023
  26. Surya, A., N. Murthy, and S. Anita. 1994. Tetracyanoquinodimethane (TCNQ) modified electrode for NADH oxidation. Bioelectrochem. Bioenerg. 33: 71-73 https://doi.org/10.1016/0302-4598(94)87035-7
  27. Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100- 180
  28. Thestrup, H. N. and B. Hahn-Hagerdal. 1995. Xylitol formation and reduction equivalent generation during anaerobic xylose conversion with glucose as cosubstrate in recombinant Saccharomycess cerevisiae expressing the xyll gene. Appl. Environ. Microbiol. 61: 2043- 2045
  29. Varma, A. and B. O. Palsson. 1994. Metabolic flux balancing: Basic concepts, scientific and practical use. Review. Bio/ Technology 12: 994- 998 https://doi.org/10.1038/nbt1094-994
  30. White, H., H. Lebertz, I. Thanons, and H. Simon. 1987. Clostridium thermoaceticum production of methanol from carbon monoxide in the presence of viologen dyes. FEMS Microbiol. Lett. 43: 173- 176 https://doi.org/10.1111/j.1574-6968.1987.tb02118.x
  31. Willner, I., E. Katz, and N. Lapidot. 1992. Bioelectrocatalysed reduction of nitrate utilizing poly thiophene bipyridium enzyme electrodes. Bioelectrochem. Bioenerg. 29: 29-45 https://doi.org/10.1016/0302-4598(92)80051-H
  32. Wissenbach, U. A. Kroger, and G. Unden. 1990. The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli. Arch. Microbiol. 154: 60- 66
  33. Wissenbach, U., D. Thernes, and G. Unden, 1992. An Escherichia coli mutant containing only demethylmenaquinone, but not menaquinone: Effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration. Arch. Microbiol. 158: 68-73 https://doi.org/10.1007/BF00249068
  34. Xie, Y. and S. Dong. 1992. Effects of pH on the electron transfer of cytochrome-c on a gold electrode modified with bis(4pyridyl) disulphide. Bioelectrochem. Bioenerg. 29: 71-79 https://doi.org/10.1016/0302-4598(92)80054-K