A Theoretical Study on Abduction as an Inquiry Method in Earth Science

지구과학의 한 탐구 방법으로서 귀추법에 대한 이론적 고찰

  • Published : 2005.09.30

Abstract

This was a theoretical study of which the goal was to provide a foundation for developing and implementing earth science inquiry activities based on abduction as a scientific inquiry method. Through a review of relevant literature, the study examined the nature of earth science in terms of the goals of earth science inquiry and the characteristics of what is investigated in earth science. It also explored the forms and meanings of abduction, thinking strategies used in the abductive inference, and the abductive inquiry model. Abduction is the process of inferring certain rules (e.g., scientific facts, principles, laws) and providing explanatory statements or hypotheses in order to explain some phenomena. This method was found to be well-suited to the earth science inquiry which studies the causes and processes of natural phenomena in the earth and space environment. Abduction has the nature of ampliative, selective, evaluative, and creative inference, and several thinking strategies, including reconstruction of data, heuristic generalization, analogy, existential, conceptual combination, and elimination strategies, are employed for inferring rules and suggesting hypotheses. This study found the abductive inquiry model to be adaptable to earth science classrooms, and it is therefore suggested that earth science instructions should be based on the abductive method and that research work concerning the abductive inquiry in the classroom should follow.

본 연구는 과학적 탐구 방법의 하나로서 귀추법을 토대로 한 지구과학 탐구 활동을 고안하고 수행하는 기초를 마련하기 위한 이론 연구이다. 관련 분야의 문헌들을 탐색하여 지구과학의 본성을 지구과학 탐구의 목적과 탐구 대상의 특징이라는 측면에서 살펴 보고, 귀추법의 형식과 의미, 규칙 추리와 가설제안 과정에서 사용되는 사고 전략들, 귀추법에 바탕을 둔 수업 모형을 차례로 고찰하였다. 귀추법은 어떤 현상을 설명하기 위하여 특정한 사실이나 원리, 법칙 등과 같은 규칙을 추리해 내고 그 속에 함의된 설명적 진술이나 설명적 가설을 제안하는 과정으로서 지구 환경의 형성 원인과 과정을 연구하는 지구과학 탐구에 잘 부합하는 탐구 방법임을 논하였다. 귀추법은 또한, 확정적, 선택적, 평가적, 창조적인 성격을 지니고 있으며, 규칙 추리와 가설 제안 과정에는 자료에 대한 재구성, 발견 법적 일반화, 유추, 개념적 결합, 사전 평가에 의한 제거, 존재에 관한 전략 등이 사용되고 있음을 알 수 있었다. 이러한 귀추법을 토대로 한 교수-학습 모형으로서 귀추적 탐구 모형은 지구과학 교육 현장에 적용 하기에 적절한 것으로 판단되었고, 이에 따라 귀추적 방법을 모델로 한 지구과학 수업과 이와 관련된 연구가 이루어져야 한다는 것을 제안하였다.

Keywords

References

  1. 권용주, 심해숙, 정진수, 박국태 (2003) 수증기 응결에 관한 초등학생들의 가설 생성에서 귀추의 역할과 과정. 한국지구과학회지, 24(4), 250-257
  2. 권용주, 정진수, 강민정, 김영신 (2003). 과학적 가설 지식의 생성 과정에 대한 바탕 이론. 한국과학교육학회지, 23(5), 458-469
  3. 권용주, 정진수, 박윤복, 강민정 (2003). 선언적 과학 지식의 생성 과정에 대한 과학철학적 연구: 귀납적, 귀추적, 연역적 과정을 중심으로. 한국과학교육학회지, 23(3), 215-228
  4. 박종원 (2000). 학생의 과학적 설명 가설의 생성 과정 분석: 과학적 가설의 정의와 특성을 중심으로. 한국과학교육학회지, 20(4), 667-679
  5. 소흥렬 (1991) 귀추법의 논리. 과학과 철학, 2, 139-155
  6. 이훈 (1989). 삼단 논법과 변증법. 철학논집, 5, 3-30
  7. 정상모 (1993). 발견의 3가지 의미. 인지과학, 4(1), 25-49
  8. 최승언 (1998). 지구과학교육. 서울대학교 교육연구소 (편), 교육학 대백과사전 (pp. 2412-2422). 서울: 하우동설
  9. American Association for the Advancement of Science (1990). Science for all Americans. New York, NY: Oxford University of Press
  10. Braigrie, B. S. (1990). The justification of Kepler's ellipre. Studies in History and Philosophy of Science, 21, 633-664 https://doi.org/10.1016/0039-3681(90)90036-8
  11. Bybee, R. W. (2000). Teaching science as inquiry. In J. Minstrell & E. H. van Zee (Eds.), Inquiring into inquiry learning and teaching in science (pp. 20-46). Washington, DC: American Association for the Advancement of Science
  12. Chalmers, A. F. (1982). What is this thing called science?: An assessment of the nature of status of science and its method. (신일철, 신중섭 (역) (1985). 현대의 과학철학. 서울:서광사) University of Queensland Press
  13. Chiappetta, E. L., & Koballa, T. R. Jr. (2002). Science instruction in the middle and secondary schools. Upper Saddle River, NJ: Merrill Prentice Hall
  14. Clement, J., & Oviedo, M. C. N. (2003). Abduction and analogy in scientific model construction. Paper presented at the National Association for Research in Science Teaching Annual International Conference, Philadelphia, PA, March 23-26, 2003
  15. Curd, M. V. (1980). The logic of discovery: An analysis of three approach. In B. A. Brody & R. E. Grandy (1989) (Eds.), Readings in the philosophy of science Englewood Cliffs, NJ: Prentice Hall
  16. DeBoer, G. E. (1991). A history of ideas in science education: Implications for practice. New York, NY: Teachers College, Columbia University
  17. Engelhardt, W. von, & Zimmermann, J. (1982). Theory of earth science (translated by L. Fischer). Cambridge, UK: Cambridge University Press
  18. Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago, IL: University of Chicago Press
  19. Goudge, T. A. (1950). The thought of C. S. Peirce. New York, NY: Dover Publications
  20. Guthrie, R. D. (1984). Mosaics, allelochemics, and nutrients: An ecological theory of late Pleistocene megafaunal extinctions. In P. S. Martin & R. G. Klein (Eds.), Quaternary extinctions: A prehistoric revolution (pp. 259-298). Tucson, AZ: University of Arizona Press
  21. Gutting, G. (1980). The logic of invention. In T. Nickles (Ed.), Scientific discovery, logic, and rationality (pp. 221-234). Dordrecht, Holland: D. Reidel Publishing Company
  22. Hanson, N. R. (1958). Patterns of discovery. London, UK: Cambridge University Press
  23. Hanson, N. R. (1961). Is there a logic of scientific discovery? In B. A. Brody & R. E. Grandy (1989) (Eds.), Readings in the philosophy of science Englewood Cliffs, NJ: Prentice Hall
  24. Hanson, N. R. (1971). Observation and explanation: A guide to philosophy of science. London, UK: George Allen & Unwin(2nd Ed.), (pp. 417-430)
  25. Kim, C.-J. (2002). Inference frequently used in earth science. The Journal of the Korean Earth Science Society, 23(2), 188-193
  26. Kim, C.-J. (2003). Preparing teachers for systems science methodology. In V. J. Mayer (Ed.), Implementing global science literacy (pp. 255-266). Columbus, OH: The Ohio State University
  27. Kordig, C. R. (1978). Discovery and justification. Philosophy of Science, 45, 110-117 https://doi.org/10.1086/288782
  28. Koyre, A. (1973). The astronomical revolution (translated by R. E. W. Maddison). Ithaca, NY: Cornell University Press
  29. Laudan, R. (1987). From mineralogy to geology: The foundations of a science (pp. 1650-1830). Chicago, IL: University(2nd ed., pp. 417-430). of Chicago Press
  30. Lawson, A. E. (1995). Science teaching and the development of thinking. Belmont, CA: Wadsworth Publishing Company
  31. Leverington, D. (1995). A history of astronomy: From 1890 to the present. Oxford, UK: Springer
  32. Llewellyn, D. (2002). Inquire within: Implementing inquiry-based science standards. Thousand Oaks, CA: Corwin Press
  33. Magnani, L. (2001). Abduction, reason, and science: Process of discovery and explanation. New York, NY: Kluwer Academic/Plenum Publishers
  34. Martin, P. S. (1984). Prehistoric overkill: The global model. In P. S. Martin & R. G. Klein (Eds.), Quaternary extinctions: A prehistoric revolution (pp. 354-403). Tucson, AZ: University of Arizona Press
  35. National Research Council (1996). National Science Education Standards. Washington, DC: National Academy Press
  36. National Research Council (2000). Inquiry and the National Science Education Standards: A guide for teaching and learning. Washington, DC: National Academy Press
  37. Nickles, T. S. (Ed.) (1980). Scientific discovery, logic, and rationality. Dordrecht, The Netherlands: D. Reidel Publishing Company
  38. Oh, P. S. (2004). The nature of scientific methods and its implication for inquiry activities in science classrooms. East-West Education, 21, 89-101. Ewha Womans University
  39. Oreskes, N. (Ed.) (2003). Plate tectonics: An insider's history of the modem theory of the earth. Boulder, CO: Westview
  40. Popper, K. R. (1959). The logic of scientific discovery (박우석 (역) (1994). 과학적 발견의 논리. 서울: 고려원). Hutchinson
  41. Psillos, S. (2000). Abduction: Between conceptual richness and computational complexity. In P. A. Flach, & A. C. Kakas (Eds.), Abduction and induction (pp. 59-74). Dordrecht, The Netherlands: Kluwer Academic Publishers
  42. Selles-Martinez, J. (2004.). International Earth Science Olympiad: What to test and how to do so. Seoul Conference for International Earth Science Olympiad(IESO) Conference Proceedings, 136-142
  43. Snyder, L. J. (1997). Discoverer's induction. Philosophy of Science, 64, 580-604 https://doi.org/10.1086/392573
  44. Thagard, P. (1988). Computational philosophy of science. Cambridge, MA: The MIT Press
  45. Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press
  46. Westman, R. S. (1973). Kepler's theory of hypothesis. Vistas in Astronomy, 16, 713-720 https://doi.org/10.1016/0083-6656(75)90159-2
  47. Conceptual revolutions Thagard, P.
  48. Vistas in Astronomy v.16 Kepler's theory of hypothesis Westman, R.S.