DOI QR코드

DOI QR Code

Reidentification of Colletotrichum gloeosporioides and C. acutatum Isolates Stored in Korean Agricultural Culture Collection (KACC)

한국농업미생물자원센터 (KACC)에 보존중인 Colletotrichum gloeosporioides와 C. acutatum의 재동정

  • Kim, Dae-Ho (Korean Agricultural Culture Collection, National Institute of Agricultural Biotechnology, RDA) ;
  • Jeon, Young-Ah (Korean Agricultural Culture Collection, National Institute of Agricultural Biotechnology, RDA) ;
  • Go, Seung-Joo (Korean Agricultural Culture Collection, National Institute of Agricultural Biotechnology, RDA) ;
  • Lee, Jong-Kyu (Tree Pathology and Mycology Laboratory, Division of Forest Resources, Kangwon National University) ;
  • Hong, Seung-Beom (Korean Agricultural Culture Collection, National Institute of Agricultural Biotechnology, RDA)
  • 김대호 (농촌진흥청 농업생명공학연구원 한국농업미생물자원센터) ;
  • 전영아 (농촌진흥청 농업생명공학연구원 한국농업미생물자원센터) ;
  • 고승주 (농촌진흥청 농업생명공학연구원 한국농업미생물자원센터) ;
  • 이종규 (강원대학교 산림과학대학 산림자원보호학과) ;
  • 홍승범 (농촌진흥청 농업생명공학연구원 한국농업미생물자원센터)
  • Published : 2006.12.01

Abstract

Thirty-nine strains of Colletotrichum gloeosporioides and 5 strains of C. acutatum stored in Korean Agricultural Culture Collection(KACC) were re-identified based on molecular characteristics of ribosomal internal transcribed spacer(ITS) and partial $\beta$-tubulin gene and cultural characteristics on potato dextrose agar(PDA) and Benomyl-added PDA. As the results, 19 strains were identified as C. acutatum with 13 strains of group A2, 5 strains of group A3, and 1 strain of group A4. In addition, 20 strains were identified as C. gloeosporioides with 18 strains of ribosomal DNA group(RG) 4 and 2 strains of RG6. The rest were identified as C. boninense RG5(2 strains), C. coccodes RG2(2 strains), and C. dematium RG12(1 strain). Out of domestic 31 strains, 12 strains were identified as C. acutatum A2, one strain as C. acutatum A3, 14 strains as C. gloeosporioides RG4, 2 strains as C. gloeosporioides RG6, one strains as C. boninense RG5 and one strain as C. dematium RG12. We also discussed taxonomy of C. gloeosporioides and C. acutatum and composition of C. gloeosporioides/C. acutatum isolates from major crops in Korea.

한국농업미생물자원센터(Korean Agricultural Culture Collection, KACC)에 보존되어 있는 Colletotrichum gloeosporioides 39 균주와 C. acutatum 5 균주를 ribosomal DNA-ITS와 $\beta$-tubulin 부분염기서열과 PDA와 Benomyl-PDA배지에서의 생장 특성에 의하여 재동정 하였다. 그 결과 13 균주가 Talhinhas 등의 C. acutatum A2 그룹으로, 5 균주가 C. acutatum A3 그룹으로, 1 균주가 C. acutatum A4 그룹으로, 18 균주가 Moriwaki 등의 C. gloeosporioides ribosomal DNA group(RG) 4로 2 균주가 C. gioeosporioides RG6로 2 균주가 c. boninense RG5로 2 균주는 C. coccodes RG2 그리고 1 균주는 c. dematium RG12로 재동정되었다. 이들 중에서 한국에서 분리된 31 균주는 12 균주가 C. acutatum A2 그룹으로, 1 균주가 C. acutatum A3 그룹으로, 14 균주가 C. gloeosporioides RG4 로 2 균주가 C. gloeosporioides RG6로 1 균주가 C. boninense RG5로 그리고 1 균주는 C. dematium RG12로 동정되었다. 더불어 C. acutatum/C. gloeosporioides의 분류적인 특징과 국내 주요 기주별 분포 등에 대하여 고찰하였다.

Keywords

References

  1. Adaskaveg, J. E. and Forster, H. 2000. Occurrence and management of anthracnose epidemics caused by Colletotrichum species on tree fruit crops in California. n: Colletotrichum, Host Specificity, Pathology, and Host- Pathogen Interaction. ed. by D. Prusky, S. Freeman and M. B. Dickman, pp. 317-336. The American Phytopathological Society Press, St. Paul, Minnesota, USA
  2. Adaskaveg, J. E. and Hartin, R. J. 1997. Characterization of Colletotrichum acutatum isolates causing anthracnose of almond and peach in California. Phytopathology 87: 979-987 https://doi.org/10.1094/PHYTO.1997.87.9.979
  3. Brooker, A. E., Sreenivasaprasad, S. and Timmer, L. W. 1991. Molecular characterization of slow-growing orange and key lime anthracnose strains of Colletotrichum from citrus as C. acutatum. Phytopathology 86: 523-527 https://doi.org/10.1094/Phyto-86-523
  4. Freeman, S., Katan, T. and Shabi, E. 1998. Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant. Dis. 82: 596-605 https://doi.org/10.1094/PDIS.1998.82.6.596
  5. Freeman, S., Pham, M. and Rodriguez, R. J. 1993. Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A+T-rich DNA and nuclear DNA analyses. Exp. Mycol. 17: 309-322 https://doi.org/10.1006/emyc.1993.1029
  6. Glass, N. L. and Donaldson, G. C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61: 1323-1330
  7. Hong, S. B., Go, S. J., Shin, H. D., Frisvad, J. C. and Samson, R. A. 2005. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97: 1316-1329 https://doi.org/10.3852/mycologia.97.6.1316
  8. 강번관, 민지영, 김윤식, 박성우, Nguyen V. B., 김흥태. 2005. 고추 탄저병균 Colletotrichum acutatum의 포장 밀도 조사를 위한 반선택 배지의 확립 및 활용. 식물병연구. 11: 21-27 https://doi.org/10.5423/RPD.2005.11.1.021
  9. Kim, J. T., Park, S. K., Choi, W. B., Lee, Y. H. and Kim, H. T. 2003. Identification of Colletotrichum spp. associated with pepper anthracnose in Korea. (abst.) Plant Pathol. J. 19: 331
  10. Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150-163 https://doi.org/10.1093/bib/5.2.150
  11. Lee, S. B. and Taylor, J. W. 1990. Isolation of DNA from fungal mycelia and single spores. In: PCR Protocols: A guide to methods and applications, ed. by M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White. pp. 282-287. Academic Press, New York, USA
  12. Lubbe, C. M., Denman, S., Cannon, P. F., Groenewald, J. Z. (Ewald), Lamprecht, S. C. and Crous, P. W. 2004. Characterization of Colletotrichum species associated with diseases of Proteaceae. Mycologia 96: 1268-1279 https://doi.org/10.2307/3762144
  13. Maymon, M., Zveibil, A., Pivonia, S., Minz, D. and Freeman, S. 2006. Identification and characterization of Benomyl-resistant and -sensitive populations of Colletotrichum gloeosporioides from statice (Limonium spp.). Phytopathology 96: 542-548 https://doi.org/10.1094/PHYTO-96-0542
  14. Moriwaki, J., Sato, T. and Tsukiboshi, T. 2003. Morphological and molecular characterization of Colletotrichum boninense sp. nov. from Japan. Mycoscience 44: 47-53 https://doi.org/10.1007/s10267-002-0079-7
  15. Moriwaki, J., Tsukiboshi, T. and Sato, T. 2002. Grouping of Colletotrichum species in Japan based on rDNA sequence. J. Gen. Plant Pathol. 68: 307-320 https://doi.org/10.1007/PL00013096
  16. Nirenberg, H. I., Feiler, U. and Hagedorn, G. 2002. Description of Colletotrichum lupini comb. nov. in modern terms. Mycologia 94: 307-320 https://doi.org/10.2307/3761809
  17. O'Donnell, K. and Cigelnik, E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7: 103- 116 https://doi.org/10.1006/mpev.1996.0376
  18. Sreenivasaprasad, S., Crown, A. E. and Mills, P. R. 1992. DNA sequence and interrelationships among Colletotrichum species causing strawberry anthracnose. Physiol. Mol. Plant Pathol. 41: 265-281 https://doi.org/10.1016/0885-5765(92)90026-R
  19. Sutton, B. C. 1980. The Coleomycetes. Fungi Imperfecti with Picnidia, Acervuli and Stromata. Commonwealth Mycological Institute, Kew, Surrey, England. 696pp
  20. Talhinhas, P., Sreenivasaprasad, S., Neves-Martins, J. and Oliveira, H. 2002. Genetic and morphological characterization of Colletotrichum acutatum causing anthracnose of lupins. Phytopathology 92: 986-996 https://doi.org/10.1094/PHYTO.2002.92.9.986
  21. Talhinhas, P., Sreenivasaprasad, S., Neves-Martins, J. and Oliveira, H. 2005. Molecular and phenotypic analyses reveal association of diverse Colletotrichum acutatum Groups and a low level of C. gloeosporioides with olive anthracnose. Appl. Environ. Microbiol. 71: 2987-2998 https://doi.org/10.1128/AEM.71.6.2987-2998.2005
  22. Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S. and Fisher, M. C. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 31: 21-32 https://doi.org/10.1006/fgbi.2000.1228
  23. White, T. J., Bruns, T. D., Lee, S. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to methods and applications, ed. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, New York, USA

Cited by

  1. Morphological, physiological and pathological variations among isolates of Colletotrichum falcatum that cause red rot of sugarcane vol.8, pp.10, 2014, https://doi.org/10.5897/AJMR2012.2469