DOI QR코드

DOI QR Code

Ultra Grain Refinement and High Strengthening of Deoxidized Low-Phosphorous Copper by Accumulative Roll-Bonding Process

ARB법에 의한 인탈산동의 결정립초미세화 및 고강도화

  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Han, Seung-Zeon (Department of Materials Technology, Korea Institute of Machinery and Materials) ;
  • Lim, Cha-Yong (Department of Materials Technology, Korea Institute of Machinery and Materials)
  • 이성희 (목포대학교 신소재공학과) ;
  • 한승전 (한국기계연구원 재료연구부) ;
  • 임차용 (한국기계연구원 재료연구부)
  • Published : 2006.09.27

Abstract

A deoxidized low-phosphorous (DLP) copper was processed by accumulative roll-bonding (ARB) for ultra grain refinement and high strengthening. Two copper sheets 1 mm thick, 30 mm wide and 300 mm long are first degreased and wire-brushed for sound bonding. The sheets are then stacked to each other, and roll-bonded by about 50% reduction rolling without lubrication at ambient temperature. The bonded sheet is then cut to the two pieces of same dimensions and the same procedure was repeated to the sheets up to eight cycles (${\varepsilon}{\sim}6.3$). TEM observation revealed that ultrafine grains were developed after the 4th cycle, and their size decreased at higher cycles. Tensile strength of the copper increased with the equivalent strain, and it reached 547 MPa which was 3 times higher than that of the initial material. It is concluded that the ARB process is an effective method for high strengthening of the DLP copper.

Keywords

References

  1. R. Z. Valiev, N. A. Krasilnikov and N. K. Tsenev, Mater. Sci. Eng., A137, 35 (1991) https://doi.org/10.1016/0921-5093(91)90316-F
  2. R. Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapwlski and B. Baudelet, Scripta Metall. Mater., 27, 855 (1992) https://doi.org/10.1016/0956-716X(92)90405-4
  3. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R. G. Hong, Scripta Mater., 39, 1221 (1998) https://doi.org/10.1016/S1359-6462(98)00302-9
  4. N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa, Scripta Mater., 40, 795 (1999) https://doi.org/10.1016/S1359-6462(99)00015-9
  5. S. H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya and T. Sakai, ?Scripta Mater., 46, 281 (2002) https://doi.org/10.1016/S1359-6462(01)01239-8
  6. S. H. Lee, Y. Saito, T. Sakai and H. Utsunomiya, Mater. Sci. Eng., A325, 228 (2002) https://doi.org/10.1016/S0921-5093(01)01416-2
  7. S. H. Lee, Y. Saito, K. T. Park and D. H. Shin, Mater, Trans., 43, 2320 (2002) https://doi.org/10.2320/matertrans.43.2320
  8. S. H. Lee, H. Inagaki, H. Utsunomiya, Y. Saito and T. Sakai, Mater. Trans., 44, 1376 (2003) https://doi.org/10.2320/matertrans.44.1376
  9. Y. Saito, H. Utsunomiya and H. Suzuki, Proc. Inst. Mech. Eng. Ser. B, 215, 947 (2001) https://doi.org/10.1243/0954405011518854
  10. J. Y. Huang, Y. T. Zhu, H. Jiang and T. C. Lowe, Acta Mater,,49, 1497 (2001) https://doi.org/10.1016/S1359-6454(01)00069-6
  11. Y. H. Jang, S. S. Kim, S. Z. Han, C. Y. Lim, C. J. Kim and M. Goto, Scripta Mater., 52, 21 (2005) https://doi.org/10.1016/j.scriptamat.2004.09.005
  12. S. H. Lee, J. Cho, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 15, 240 (2005) https://doi.org/10.3740/MRSK.2005.15.4.240
  13. S. H. Lee, J. Cho, C. H. Lee, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 15, 555 (2005) https://doi.org/10.3740/MRSK.2005.15.9.555
  14. M. F. Ashby, Phil. Mag., 21, 399 (1970) https://doi.org/10.1080/14786437008238426
  15. N. Tsuji, R. Ueji, Y. Ito and Y. Saito, Proc. of the 21st Riso Int. Symp. on Mat. Sci., Riso National Laboratory, Denmark, 607 (2000)
  16. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 1st ed., p.129, Elsevier Science Ltd., England, (1995)

Cited by

  1. Fabrication Technique of Ultrafine Grained High-Strength Metallic Materials by Accumulative Roll-Bonding Process vol.25, pp.3, 2007, https://doi.org/10.5781/KWJS.2007.25.3.012