DOI QR코드

DOI QR Code

Identification of Immunostimulatory Oligodeoxynucleotide from Escherichia coli Genomic DNA

  • Choi, Yong-Jun (Department of Biochemistry, College of Science, Yonsei University) ;
  • Lee, Keun-Wook (Center for Medical Science Research, Hallym University) ;
  • Kwon, Hyung-Joo (Center for Medical Science Research, Hallym University) ;
  • Kim, Doo-Sik (Department of Biochemistry, College of Science, Yonsei University)
  • Received : 2006.07.10
  • Accepted : 2006.07.19
  • Published : 2006.11.30

Abstract

Bacterial DNA containing immunostimulatory CpG motifs can stimulate antigen-presenting cells to express co-stimulatory molecules and to produce various cytokines in vivo and in vitro. In this study, we fragmented macromolecular E.coli genomic DNA with DNase I, and analyzed the ability of the resulting DNA fragments to induce the NF-${\kappa}B$ activation and humoral immune response. Furthermore, using computational analysis and luciferase assay for synthetic ODNs based on the sequence of the immunostimulatory DNA fragments (DF-ODNs), an active component of DF-ODNs sequences was investigated. Experimental results demonstrated that DF-ODN is optimal for the NF-${\kappa}B$-responsive promoter activation in the mouse macrophage cell line and the humoral immune response in vivo. In agreement with the activity of the DF-ODNs processed by DNase I, a synthetic ODN based on the DF-ODN sequences is potent at inducing IL-12 mRNA expression in primary dendritic cells. These results suggest that the discovery and characterization of a highly active natural CpG-ODN may be achieved by the analyses of bacterial DNA fragments generated by a nuclease activity.

Keywords

References

  1. Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787 https://doi.org/10.1038/35021228
  2. Ahmad-Nejad, P., Hacker, H., Rutz, M., Bauer, S., Vabulas, R. M. and Wagner, H. (2002) Bacterial CpG-DNA and lipopolysaccharides activate toll-like receptors at dictinct cellular compartments. Eur. J. Immunol. 32, 1958-1968 https://doi.org/10.1002/1521-4141(200207)32:7<1958::AID-IMMU1958>3.0.CO;2-U
  3. Beckman, E. M., Porcelli, S. A., Morita, C. T., Behar, S. M., Furlong, S. T. and Brenner, M. B. (1994) Recognition of a lipid antigen by CD1-restricted ab+ T cells. Nature 372, 691-694 https://doi.org/10.1038/372691a0
  4. Broide, D., Schwarze, J., Tighe, H., Gifford, T., Nguyen, M., Malek, D. S., Van Uden, J., Martin-Orozco, E., Gelfand, E. W. and Raz, E. (1998) Immunostimulatory DNA sequences inhibit IL-5, eosinophilic inflammation, and airway hyperresponsiveness in mice. J. Immunol. 161, 7054-7062
  5. Hartmann, G., Weiner, G. J. and Krieg, A. M. (1999) CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc. Natl. Acad. Sci. USA 96, 9305-9310 https://doi.org/10.1073/pnas.96.16.9305
  6. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K. and Akira, S. (2000) A toll-like receptor recognizes bacterial DNA. Nature, 408, 740-745 https://doi.org/10.1038/35047123
  7. Janeway, C.A. Jr. and Medzhitov, R. (1998) Introduction: the role of innate immunity in the adaptive immune response. Semin. Immunol. 10, 349-350 https://doi.org/10.1006/smim.1998.0142
  8. Jing, Z., Liu, Y., Dong, M., Hu, S. and Huang, S. (2004) Identification of the DNA binding element of the human ZNF333 protein. J. Biochem. Mol. Biol. 37, 663-670 https://doi.org/10.5483/BMBRep.2004.37.6.663
  9. Klinman, D. M., Yi, A. K., Beaucage, S. L., Conover, J. and Krieg, A. M. (1996) CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon g. Proc. Natl. Acad. Sci. USA 93, 2879-2883 https://doi.org/10.1073/pnas.93.7.2879
  10. Krieg, A. M. (2002) CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709-760 https://doi.org/10.1146/annurev.immunol.20.100301.064842
  11. Krieg, A. M. and Davis, H. L. (2001) Enhancing vaccines with immune stimulatory CpG DNA. Curr. Opin. Mol. Ther. 3, 15-24
  12. Krieg, A. M., Yi, A. K., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R., Koretzky, G. A. and Klinman, D. M. (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546-549 https://doi.org/10.1038/374546a0
  13. Kwon, H. J. and Kim, D. S. (2003) Production of nuclease activity in U937 cells by phorol 12-myristate 13-acetate and lipopolysaccharide. J. Biochem. Mol. Biol. 36, 520-523 https://doi.org/10.5483/BMBRep.2003.36.5.520
  14. Lee, K. W., Jung, J., Lee, Y., Kim, T. Y., Choi, S. Y., Park, J., Kim, D. S. and Kwon, H. J. (2006) Immunostimulatory oligodeoxynucleotide isolated from genome wide screening of Mycobacterium bovis chromosomal DNA. Mol. Immunol. 43, 2107-2118 https://doi.org/10.1016/j.molimm.2005.12.004
  15. Lee, K. W., Kim, D. S. and Kwon, H. J. (2004) CG sequenceand phosphorothioate backbone modification-dependent activation of the NF-kB-responsive gene expression by CpGoligodeoxynucleotides in human RPMI 8226 B cells. Mol. Immunol. 41, 955-964 https://doi.org/10.1016/j.molimm.2004.06.022
  16. Liang, H. and Lipsky, P. E. (2000) Responses of human B cells to DNA and phosphorotioate oligodeoxynucleotides. Curr. Top. Microbiol. Immunol. 247, 227-240
  17. Monteith, D. K., Henry, S. P., Howard, R. B., Flournoy, S., Levin, A. A., Bennet, C. F. and Crooke, S. T. (1997) Immune stimulation-a class effect of phosphorothioate oligonucleotides in rodents. Anticancer Drug Des. 12, 421-432
  18. Pang L. Y. and Ru, B. G. (2005) Studies on the epitope of neuronal growth inhibitory factor (GIF) with using of the specific antibody. J. Biochem. Mol. Biol. 38, 646-649 https://doi.org/10.5483/BMBRep.2005.38.6.646
  19. Pisetsky, D. S. (1996A) Immune activation by bacterial DNA: a new genetic code. Immunity 5, 303-310 https://doi.org/10.1016/S1074-7613(00)80256-3
  20. Pisetsky, D. S. (1996B) The immunologic properties of DNA. J. Immunol. 156, 421-423
  21. Stein, C. A., Subasinghe, C., Shinozuka, K. and Cohen, J. S. (1988) Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 16, 3209-3221 https://doi.org/10.1093/nar/16.8.3209
  22. Takeshita, F. and Klinman, D. M. (2000) CpG ODN-mediated regulation of IL-12 p40 transcription. Eur. J. Immunol. 30, 1967-1976 https://doi.org/10.1002/1521-4141(200007)30:7<1967::AID-IMMU1967>3.0.CO;2-5
  23. Zhao, Q., Waldschmidt, T., Fisher, E., Herrera, C. J. and Krieg, A. M. (1994) Stage-specific oligonucleotide uptake in murine bone marrow B-cell precursors. Blood 84, 3660-3666

Cited by

  1. Enhancement of immunomodulatory activity by liposome-encapsulated natural phosphodiester bond CpG-DNA in a human B cell line vol.43, pp.4, 2010, https://doi.org/10.5483/BMBRep.2010.43.4.250
  2. Immunostimulation and anti-DNA antibody production by backbone modified CpG-DNA vol.379, pp.2, 2009, https://doi.org/10.1016/j.bbrc.2008.12.063
  3. Activation of Toll-like receptor 9 and production of epitope specific antibody by liposome-encapsulated CpG-DNA vol.44, pp.9, 2011, https://doi.org/10.5483/BMBRep.2011.44.9.607
  4. Adjuvant effect of liposome-encapsulated natural phosphodiester CpG-DNA vol.44, pp.11, 2011, https://doi.org/10.5483/BMBRep.2011.44.11.758
  5. The production and immunostimulatory activity of double-stranded CpG-DNA vol.43, pp.3, 2010, https://doi.org/10.5483/BMBRep.2010.43.3.164