The Preparation and Property of Dye Sensitized Solar Cells using TiO2

TiO2를 이용한 염료감응형 태양전지의 제조 및 특성

  • Kim, Gil-Sung (Thin Film Technology Laboratory, School of Chemical Engineering, Chonbuk National University) ;
  • Kim, Young-Soon (Thin Film Technology Laboratory, School of Chemical Engineering, Chonbuk National University) ;
  • Kim, Hyung-Il (Thin Film Technology Laboratory, School of Chemical Engineering, Chonbuk National University) ;
  • Seo, Hyung-Kee (Thin Film Technology Laboratory, School of Chemical Engineering, Chonbuk National University) ;
  • Yang, O-Bong (Center for Advanced Radiation Technology, School of Chemical Engineering, Chonbuk National University) ;
  • Shin, Hyung-Shik (Thin Film Technology Laboratory, School of Chemical Engineering, Chonbuk National University)
  • 김길성 (전북대학교 화학공학부 박막재료실) ;
  • 김영순 (전북대학교 화학공학부 박막재료실) ;
  • 김형일 (전북대학교 화학공학부 박막재료실) ;
  • 서형기 (전북대학교 화학공학부 박막재료실) ;
  • 양오봉 (전북대학교 화학공학부 첨단방사선응용연구센터) ;
  • 신형식 (전북대학교 화학공학부 박막재료실)
  • Received : 2005.12.02
  • Accepted : 2006.01.20
  • Published : 2006.04.30

Abstract

Two types of $TiO_2$, nanotube and nanoparticle, were used for the mesoporous coatings by doctor blade technique followed by calcining at $450^{\circ}C$. The coatings were used as working materials for dye-sensitized solar cells (DSCs) later on and their photovoltaic characterization was carried out. The nanoparticle was synthesized from hydrogen titanate nanotube by hydrothermal treatment at $180^{\circ}C$ for 24 hr. The solar energy conversion efficiency (${\eta}$) of DSCs prepared by this nanoparticle reached 8.07% with $V_{OC}$ (open-circuit potential) of 0.81 V, $I_{SC}$ (short-circuit current) of $18.29mV/cm^2$, and FF (fill factor) of 66.95%, respectively. For the preparation of nanotube, the concentration of NaOH solution varied from 3 M to 5 M. In the case of DSCs fabricated with nanotubes from 3 M NaOH solution, the ${\eta}$ reached 6.19% with $V_{OC}$ of 0.77 V, $I_{SC}$ of $12.41mV/cm^2$, and FF of 64.49%, respectively. On the other hand, in the case of 5 M solution, the photovoltaic ${\eta}$ was decreased with 4.09% due to a loss of photocarriers. In conclusion, it is demonstrated that the solar energy conversion efficiency of DSCs made from $TiO_2$ nanoparticle showed best results among those under investigation.

$TiO_2$를 나노튜브(nanotube)와 나노입자(nanoparticle)의 두 가지 형태로 제조하여 닥터 브레이드 방법과 $450^{\circ}C$에서의 소결 공정을 통하여 다공성막으로 제조하였다. 이 다공성막을 작용물질로 사용하여 염료감응형 태양전지를 제조하고 그 특성을 조사하였다. $TiO_2$ 나노입자는 수소화 티탄염 나노튜브를 $180^{\circ}C$에서 24시간 동안 가수열분해 처리함으로써 합성하였다. 이 $TiO_2$ 나노입자를 다공성막으로 사용하여 제작한 염료감응형 태양전지의 에너지 효율(${\eta}$)은 8.07%이며, 개방전압(open-circuit potential, $V_{OC}$), 단락전류(short-circuit current, $I_{SC}$)와 fill factor(FF) 값은 각각 0.81 V, $18.29mV/cm^2$와 66.95%이었다. 나노튜브 $TiO_2$를 제조할 경우에는 NaOH 용액의 농도를 3M과 5M로 변화시켰다. 그 결과 3M NaOH 용액에서 합성된 나노튜브 $TiO_2$를 다공성막으로 사용하여 제작된 염료감응형 태양전지의 에너지 효율(${\eta}$)은 6.19%이었으며, $V_{OC}$, $IV_{SC}$와 FF 값은 각각 0.77 V, $12.41mV/cm^2$와 64.49%이었다. 반면에 5 M NaOH에서는 전자이동성이 좋지 않아 효율이 4.09%로 감소하였다. 본 연구 결과 가수열분해법에 의해 제조한 $TiO_2$ 나노입자로 제조한 염료감응형 태양전지의 효율이 가장 높았다.

Keywords

References

  1. O'Regan, B. and Grätzel, M., 'A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized $TiO_2$ Fimls,' Nature, 353, 737-740(1991) https://doi.org/10.1038/353737a0
  2. Grtzel, M., 'Photoelectrochemical Cells,' Nature, 414, 338(2001) https://doi.org/10.1038/35104607
  3. Hara, K., Tachibana, Y., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H. and Arakawa, H., 'Dye-sensitized Nanocrystalline $TiO_2$ Solar Cells Based on Novel Coumarin Dyes,' Solar Energy Materials and Solar Cells, 77(1), 89(2003) https://doi.org/10.1016/S0927-0248(02)00460-9
  4. Qiu, F. L., Fisher, A. C. and Walker, A. B., 'The Distribution of Photoinjected Electrons a Dye-sensitized Nanocrystalline $TiO_2$ Solar Cell Modelled by a Boundary Element Method,' Electrochemistry Communications, 5(8), 711-716(2003) https://doi.org/10.1016/S1388-2481(03)00165-6
  5. Nguyen, T.-V., Lee, H.-C. and Yang, O-B., 'The Effect of Prethermal Treatment of $TiO_2$ Nano-particles on the Performances of Dye-sensitized Solar Cells,' Solar Energy Materials and Solar Cells, In Press, Corrected Proof, Available online 11 July(2005)
  6. Park, N. G., 'Dye-sensitized Solar Cell,' J. Korean Ind. Eng. Chem., 15(3), 268(2004)
  7. Kim, K. Y., Lee, K. Y., Kwon, O. K., Shin, D. M., Sohn, B. C. and Choi, J. H., 'Size Dependence of Electroluminescence of Nanoparticle (rutile-$TiO_2$) Dispersed MEH-PPV Films,' Synthetic Metals, 110-112, 207-211(2000)
  8. Houzouil, T., Saito, N., Kudo, A. and Sakata, T., 'Electroluminescence of $TiO_2$ Film and $TiO_2:Cu^{2+}$ Film Prepared by the Sol-gel Method,' Chemical Physics Letters, 254(1-2), 109-113(1996) https://doi.org/10.1016/0009-2614(96)00284-9
  9. Na, Y. S., Song, S. K. and Park, Y. S., 'Photocatalytic Decoloriation of Rhodamine B by Immobilized $TiO_2$/UV in a Fluidizedbed Reactor,' Korean J. Chem. Eng., 22(2). 196-200(2005) https://doi.org/10.1007/BF02701484
  10. Nam, W. S. and Han, G. Y., 'A Photocatalytic Performance of $TiO_2$ Photocatalyst Prepared by the Hydrothermal Method,' Korean J. Chem. Eng., 20(1), 180-184(2003) https://doi.org/10.1007/BF02697206
  11. Lee, Y. G., Lee, T. G. and Kim, W. S., 'Comparison of the Mercury Removal Efficiency Using $TiO_2$ Powder under Various Light Source,' Korean Chem. Eng. Res., 43(1), 170-175 (2005)
  12. Kwon, T. R., Roo, W. H., Lee, C. W. and Lee, W. M., 'Preparation of Wall Paper Cated with Modified $TiO_2$ and their Photocatalytic Effects for Removal of No in Air,' Korean Chem. Eng. Res., 43(1), 1-8(2005)
  13. Li, Y., Hagen, J., Schaffrath, W., Otschik, P. and Haarer, D., 'Titanium Dioxide Films for Photovaltaic Cells Derived from a Solgel Process,' Solar Energy Materials and Solar Cells, 56(2), 167-174(1998) https://doi.org/10.1016/S0927-0248(98)00157-3
  14. Kambe, S., Murakoshi, K., Kiramura, T., Wada, Y., Yanagida, S., Komiriami, H. and Kera, Y., 'Mesoporous Electrodes having tight Aqqlomeration of Single-phase Anatase $TiO_2$ Nanocrystallites: Application to Dye-sensitized Solar Cells,' Solar Energy Materials and Solar Cells, 61(4), 427-441(2000) https://doi.org/10.1016/S0927-0248(99)00166-X
  15. Uchida, S., Chiba, R., Tomiha, M., Masaki, N. and Shirai, M., 'Application of Titania Nanotubes to a Dye-sensitized Solar Cell,' Electrochemistry, 70(6), 418(2002)
  16. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Nihara, K., 'Formation of Titanium Oxide Nanotube,' Langmuir, 14, 3160(1998) https://doi.org/10.1021/la9713816
  17. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Nihara, K., 'Titania Nanotubes Prepared by Chemical Processing,' Advanced Materials, 11(15), 1308(1999)
  18. Godbole, V. P., Kim, G. S., Dar, M. A., Kim, Y. S., Seo, H. K., Khang, G. and Shin, H. S., 'Hot Filament Chemical Vapor Deposition Processing of Titanate Nanotube Coatings,' Nanotechnology, 16(8), 1186(2005) https://doi.org/10.1088/0957-4484/16/8/035
  19. Godbole, V. P., Kim, Y. S., Kim, G. S., Dar, M. A. and Shin, H. S., 'Synthesis of Titanate Nanotubes and Its Procesing by Different Methods,' Electrochimica Acta(in accepted)
  20. Seo, D. S., Lee, J. K. and Kim, H., 'Preparation of Nanotubeshaped $TiO_2$ Powder,' Journal of Crystal Growth, 229, 428-432 (2001) https://doi.org/10.1016/S0022-0248(01)01196-4
  21. Seo, D. S., Lee, J. K., Lee, E. G. and Kim, H., 'Effect of Aging Agents on the Formation of $TiO_2$ Nanocrystalline Powder,' Materials Letters, 51, 115-119(2001) https://doi.org/10.1016/S0167-577X(01)00275-0
  22. Chen, Y. F., Lee, C. Y., Yeng, M. Y. and Chin, H. T., 'Preparing titanium Oxide with Various Morphologies,' Materials Chemistry and Physics, 81, 39-44(2003) https://doi.org/10.1016/S0254-0584(03)00100-7
  23. Kim, G. S., Godbole, V. P., Kim, Y. S., Seo, H. K. and Shin, H. S., 'Sodium Removal from Titanate Nanotubes in Electrodeposition Process,' Electrochemistry Communications(in accepted)