Model Development of Surfactant Reuse by Activated Carbons in Soil Washing Process

토양세척 공정에서 활성탄을 이용한 계면활성제 재사용 모델 개발

  • Ahn, Chi-Kyu (School of Environmental Science and Engineering, POSTECH) ;
  • Kim, Young-Mi (Department of Chemical Engineering, Hanbat National University) ;
  • Woo, Seung-Han (Department of Chemical Engineering, Hanbat National University) ;
  • Park, Jong-Moon (School of Environmental Science and Engineering/Department of Chemical Engineering, POSTECH)
  • 안치규 (포항공과대학교 환경공학부) ;
  • 김영미 (포항공과대학교 환경공학부) ;
  • 우승한 (국립 한밭대학교 화학공학과) ;
  • 박종문 (포항공과대학교 화학공학과/환경공학부)
  • Published : 2006.04.01

Abstract

A model describing the distributions of surfactants and HOCs (hydrophobic organic chemicals) in surfactant/HOC/activated carbon systems for surfactant reuse in soil washing process was developed. The model simulation was conducted for the evaluation of the effect of concentrations of surfactant, HOC, or activated carbons. Phenanthrene as a target HOC, Triton X-100 as surfactant and three granular activated carbons with different particle sizes (4-12, 12-20, and 20-40 mesh) were used in the model simulation. The distributions of HOC were significantly affected by surfactant dosages, especially at around the CMC(s). The results of selectivities for phenanthrene were much larger than 1 at various concentrations of surfactants, phenanthrene and activated carbons, which mean that the selective adsorption of phenanthrene by activated carbons is a proper separation method from surfactant solution. The model can be applied for the design of the surfactant reuse process using activated carbons without extra experimental efforts.

HOCs(hydrophobic organic chemicals)로 오염된 토양을 복원하기 위해 적용한 토양세척 공정에서 발생한 계면활성제 용액을 재사용하는 기술로 활성탄을 사용하였으며 이때 계면활성제와 HOCs 의 분배를 예측 할 수 있는 모델을 개발하였다. 모델은 활성탄이 주입된 계면활성제/HOC 계에서 평형 상태의 농도 분배를 바탕으로 하였다. 본 연구에서 사용한 계면활성제는 Triton X-100, HOC는 phenanthrene, 활성탄은 Darco 20-40, 12-20, 4-12 메쉬 이다. 개발 된 모델을 통해 계면활성제의 농도, HOC의 농도, 활성탄 주입량 그리고 활성탄 입자의 크기에 따른 영향을 살펴보았다. 전산 모사를 통해 각 물질들의 분배결과를 얻었으며 이를 바탕으로 계산된 선택도는 활성탄을 이용한 계면활성제 재사용 기술의 평가에 사용되었다. 본 모델의 전산모사 결과 CMC(s)를 전후하여 서로 다른 분배 양상을 보였으며 모든 경우에서 선택도 값이 1보다 커서 활성탄을 이용한 기술이 적절한 방법임을 알 수 있었다. 모델은 계면활성제를 재사용하기 위한 복잡한 실험 이전 단계에서 간단한 전산 모사를 통해 공정의 성능을 평가할 수 있는 모델로 활용할 수 있을 것이다.

Keywords

References

  1. 안치규, 김영미, 우승한, 박종문, 2006, 활성탄을 이용한 Triton X-100 용액에서의 phenanthrene의 선택적 흡착에 관한 연구, 한 국지하수토양환경, 11(2), 13-21
  2. 우승한, 박종문, 2003, 오염토양 세척공정에서 모델링을 통한 최 적 계면활성제의 선별, 한국지하수토양환경, 8(3), 61-73
  3. An, Y.J., 2001, Photochemical treatment of a mixed PAH/surfactant solution for surfactant recovery and reuse, Environ. Prog., 20(4), 240-246 https://doi.org/10.1002/ep.670200412
  4. Cerniglia, C.E., 1992, Bioremediation of polycyclic aromatic hydrocarbons, Biodegradation, 3, 351-368 https://doi.org/10.1007/BF00129093
  5. Chiou, C.T., Porter, P.E., and Schmedding, D.W., 1983, Partition equilibria of nonionic compounds between soil organic matter and water, Environ. Sci. Technol., 17(4), 227-231 https://doi.org/10.1021/es00110a009
  6. Crittenden, J.C., Luft, P., Hand, D.W., Oravltz, J.L., Loper, S.W., and Ari, M., 1985, Prediction of multicomponent adsorption equilibria using ideal adsorbed solution theory, Environ. Sci. Technol., 19(11), 1037-1043 https://doi.org/10.1021/es00141a002
  7. Edwards, D.A., Luthy, R.G., and Liu, Z., 1991, Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions, Environ. Sci. Technol., 25(1), 127-133 https://doi.org/10.1021/es00013a014
  8. Edwards, D.A., Liu, Z., and Luthy, R.G., 1994a, Surfactant solubilization of organic compounds in soil/aqueous systems, J. Environ. Eng., 120, 5-22 https://doi.org/10.1061/(ASCE)0733-9372(1994)120:1(5)
  9. Edwards, D.A., Liu, Z., and Luthy, R.G., 1994b, Experimental data and modeling for surfactant micelles, HOCs, and soil, J. Environ. Eng., 120, 23-41 https://doi.org/10.1061/(ASCE)0733-9372(1994)120:1(23)
  10. Edwards, D.A., Adeel, Z., and Luthy, R.G., 1994c, Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system, Environ. Sci. Technol. 28(8), 1550-1560 https://doi.org/10.1021/es00057a027
  11. Gonzalez-Garcia, C.M., Gonzalez-Martin, M.L., Gomez-Serrano, V., Bruque, J.M., and Labajos-Broncano, L., 2001, Analysis of the adsorption isotherms of a non-ionic surfactant from aqueous solution onto activated carbons, Carbon, 39, 849-855 https://doi.org/10.1016/S0008-6223(00)00191-3
  12. Karickhoff, S.W., Brown, D.S., and Scott, T.A., 1979, Sorption of hydrophobic pollutants on natural sediments, Water Res., 13, 241-248 https://doi.org/10.1016/0043-1354(79)90201-X
  13. Kile, D.E. and Chiou, C.T., 1989, Water solubility enhancement of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration, Environ. Sci. Technol. 23(7), 832-838 https://doi.org/10.1021/es00065a012
  14. Li, J.-L. and Chen, B.-H., 2002, Solubilization of model polycyclic aromatic hydrocarbons by nonionic surfactants, Chem. Eng. Sci. 57, 2825-2835 https://doi.org/10.1016/S0009-2509(02)00169-0
  15. Liu, Z., Edwards, D.A., and Luthy, R.G., 1992, Sorption of nonionic surfactant onto soil, Water Res., 26, 1337-1345 https://doi.org/10.1016/0043-1354(92)90128-Q
  16. Lowe, D.F., Oubre, C.L. and Ward, C.H., 1999, Surfactants and Cosolvents for NAPL Remediation: A Technology Practices Manual, Lweis Publishers
  17. Lowe, D.F., Oubre, C.L., and Ward, C.H., 2000, Reuse of Surfactants and Cosolvents for NAPL Remediation, Lweis Publishers
  18. Narkis, N. and Ben-David, B., 1985, Adsorption of non-ionic surfactants on activated carbon and mineral clay, Water Res. 19(7), 815-824 https://doi.org/10.1016/0043-1354(85)90138-1
  19. Newcombe, G., Drikas, M., and Hayes, R., 1997, Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol, Water Res. 31(5), 1065-1073 https://doi.org/10.1016/S0043-1354(96)00325-9
  20. Park, J.-W. and Boyd, S.A., 1999, Sorption of chlorobiphenyls in sediment-water systems containing nonionic surfactants, J. Environ. Qual., 28, 945-952 https://doi.org/10.2134/jeq1999.00472425002800030027x
  21. Riser-Roberts, Eve, 1998 Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes, Lewis Publishers
  22. Schwarzenbach, R.P., Gschwend, P.M., and Imboden, D.M., 1993, Environmental Organic Chemistry, John, Wiley & Sons, New York
  23. Sellers, K, 1999, Fundamentals of Hazardous Waste Site Remediation, Lewis Publishers
  24. Shuler, M.L. and Kargi F., 2002, Bioprocess Engineering: Basic concepts. 2nd Eds., Prentice Hall, NJ. p. 343-349
  25. Urano, K., Saito, M., and Murata, C., 1984, Adsorption of surfactants on sediments Chemosphere, 13(2), 293-300 https://doi.org/10.1016/0045-6535(84)90136-X
  26. Volkering, F., Breure, A.M., and Rulkens, W.H., 1998, Microbiological aspects of surfactant use for biological soil remediation, Biodegradation, 8, 401-417 https://doi.org/10.1023/A:1008291130109
  27. Walters, R.W. and Luthy, R.G., 1984, Equilibrium adsorption of polyaromatic hydrocarbons from water onto activated carbon, Environ. Sci. Technol. 18(6), 395-403 https://doi.org/10.1021/es00124a002
  28. West, C.C. and Harwell, J.F., 1992, Surfactant and subsurface remediation, Environ. Sci, Technol., 26(12), 2324-2330 https://doi.org/10.1021/es00036a002
  29. Zheng, Z. and Obbard, J.P., 2002, Evaluation of an elevated nonionic surfactant critical micelle concentration in a soil/aqueous system, Water Res., 36, 2667-2672 https://doi.org/10.1016/S0043-1354(01)00472-9