Effects of Thermal Properties and Water Retention Characteristics of Permeable Concrete Pavement on Surface Temperature

투.보수성 시멘트 콘크리트 포장의 열물성 및 수분보유특성이 표면온도에 미치는 영향

  • Ryu Nam-Hyang (Dept. of Landscape Architecture, Jinju National University) ;
  • Yoo Byung-Rim (Graduate School of Environment Studies, Seoul National University)
  • 류남형 (진주산업대학교 조경학과) ;
  • 유병림 (서울대학교 환경대학원)
  • Published : 2006.04.01

Abstract

This study was undertaken to analyze the effects of pavement thermal properties and water retention characteristics on the surface temperature of the gray permeable cement concrete pavement during the summer. Following is a summary of major results. 1) The hourly surface temperature of pavement could be well predicted with a heat transfer model program that incorporated the input data of major meteorological variables including solar radiation, atmospheric temperature, dew point, wind velocity, cloudiness and the evaporation rate of the pavements predicted by the time domain reflectometry (TDR) method. 2) When the albedo was changed to 0.5 from an arbitrary starting condition of 0.3, holding other variables constant, the peak surface temperature of the pavement dropped by 11.5%. When heat capacity was changed to $2.5\;kJm^{-3}K^{-1}\;from\;1.5\;kJm^{-3}K^{-1}$, surface temperature dropped by 8.0%. When daily evaporation was changed to 1 mm from 2 mm, temperature dropped by 5.7%. When heat conductivity was changed to $2.5\;Wm^{-1}K^{-1}\;from\;1.5\;Wm^{-1}K^{-1}$, the peak surface temperature of the pavement fell by 1.2%. The peak pavement surface temperature under the arbitrary basic condition was $24.46^{\circ}C$ (12 a.m.). 3) It accordingly became evident that the pavement surface temperature can be most effectively lowered by using materials with a high albedo, a high heat capacity or a high evaporation at the pavement surface. The glare situation, however, is intensified by raising of the albedo, moreover if reflected light is absorbed into surrounding physical masses, it is changed into heat. It accordingly became evident that raising the heat capacity and the evaporative capacity may be the moot acceptable measures to improve the thermal characteristics of the pavement. 4) The sensitivity of the surface temperature to major meteorological variables was as follows. When the daily average temperature changed to $0^{\circ}C\;from\;15^{\circ}C$, holding all other variables constant, the peak surface temperature of the pavement decreased by 56.1 %. When the global solar radiation changed to $200\;Wm^{-2}\;from\;600\;Wm^{-2}$, the temperature of the pavement decreased by 23.4%. When the wind velocity changed to $8\;ms^{-1}\;from\;4\;ms^{-1}$, the temperature decreased by 1.4%. When the cloudiness level changed to 1.0 from 0.5, the peak surface temperature decreased by 0.7%. The peak pavement surface temperature under the arbitrary basic conditions was $24.46^{\circ}C$ (12 a.m.)

Keywords

References

  1. 김영복(1998) 엔진구동 지열 히트펌프의 성능분석(I)-부산 . 진주지방 지중온도 예측-, 한국농기계학회지 23(2): 135-146
  2. 류남형, 유병림(2005) 투 . 보수성 시벤트 콘크리트 포장의 열 환경 특성(I). 한국조경학회지 32(6): 82-94
  3. 竹內淸秀, 近藤純正著(1981) 微氣象學
  4. 한영호(역), 미기상학. 서울: 지구문화사, 2001
  5. 홍준표(1991) 熱傳導.壙散의 數値解析, 서울: 반도출판사
  6. 淺枝 隆, ヴ タンカ, 北原正代(1991) 道路鋪装の熱環境に及 ぼす影響, 環境システム研究, 19: 89-93
  7. 藤野 毅, 柴原千浩, 淺枝 隆, 村頼範芳, 和氣亜紀夫(1992) 浸透生 鋪装の水分.熱移動特性と冷却效果, 水工學論文集 38: 235-239
  8. 伊藤幸廣, 松浦誠司, 辻 正哲(1996) 地表面温度低減機能を有 するインタ-ロッキングブロック鋪装に關する研究, 土木學會 論文集 544(V-32): 11-20
  9. 越川喜孝, 辻井 豪, 吉田健二(2001) 透水性を有する保水性鋪装材に関する検討, 土木學會第56回年次學術講演會 V-088: 176-177
  10. 神田 學, 土屋信夫(1995) 微氣象に基ついた屋外における人體の熱環境解釋, 土木學會論文集 509(II-30): 53-44
  11. 木内 豪, 小林裕明(1999) 快適な都市環境創造のための鋪装の高温化抑制策に關する検討, 土木學會論文集 622(VII-11): 23-33
  12. 杉村 佳昭(2003) 保水材を注入した排水性(低騷音)鋪装の冬期路面に關する研究, 幅井縣.雪對策建設技術研究所年報, 地域技術 16: 1-12
  13. 成田健一, 關r根 毅(1991) アスフアルト鋪裝面の表面温度と 熱收支の解析, 地理學評論 64(A-2): 125-137
  14. 西岡 眞稔, 鍋島美奈子, 三木 信博, 浄郷 俊二(2002) 保水性鋪装材料の熱的性能に關する實驗 -その2 屋外實驗-, 日本建築學會大會學術講演概要集(北陸) 41268: 565-566
  15. 鍋島美奈子, 西岡 眞稔, 三木 信博, 津郷 俊二(2002) 保水性鋪装材料の熱的性能に關する實驗 -その1 屋内實驗-, 日本建築學會大會學術講演概要集(北 陵) 41268: 563-564
  16. 吉中 保, 根本信行(2001) 路面温度のヒ-ト抑制を目的とした機能性鋪装に關する-檢討, 土木學會鋪装工學論文集 6: 29-38
  17. 福田萬大, 越川喜孝, 辻井 豪, 淺枝 隆, 藤野毅(1999) 夏季に給.散水した保水性鋪装の熱環境緩和特性に關する實驗的研究, 土木學會論文集 613(V-42): 225-236
  18. Agel, F. P., M. B. Parlange, A. T. Cahill, and A. Gruber (2000) Mixture of time scales in evaporation: Desorption and self-similarity of energy fluxes, Agronomy Journal 92: 832-836 https://doi.org/10.2134/agronj2000.925832x
  19. Asaeda, T., V. T. Ca, and A. Wakio(1996) Heat storage of pavement and its effect on the lower atmosphere. Atmospheric Environment 30(3): 413-427 https://doi.org/10.1016/1352-2310(94)00140-5
  20. Asaeda, T. and V. T. Ca(2000) Characteristics of permeable pavement during hot summer weather and impact on the thermal environment. Building and Environment 35: 363-375 https://doi.org/10.1016/S0360-1323(99)00020-7
  21. Bentz, D. P.(2000) A Computer Model to Predict the Surface Temperature and Time-of-Wetness of Concrete Pavements and Bridge Decks. NisTir 651. U.S. Department of Commerce
  22. Desborough, C. E., A. J. Pitman, and P. Irannejad(1996) Analysis of the relationship between bare soil evaporation and soil moisture simulated by 13 land surface schemes for a simple non-vegetated site. Global and Planetary Change 13: 47-56 https://doi.org/10.1016/0921-8181(95)00036-4
  23. Hagishima, A. and J. Tanimoto(2003) Field measurements for estimating the convective heat transfer coefficient at building surfaces. Building and Environment 38: 873-881 https://doi.org/10.1016/S0360-1323(03)00033-7
  24. Holman, J. P.(1984) Heat Transfer. New York: McGraw Hill
  25. Incopera, Y. P. and P. D. David(1985) Introduction to Heat Transfer. New York: John Wiley & Sons
  26. Kipp & Zonen(2003) Instruction Manual -Pyrgeometer & Net Pyrgeometer-. Delft: Kipp & Zonen
  27. Mayocchi, C. L. and K. L. Bristow(1995) Soil surface heat flux: some general questions and comments on measurements. Agricultural and Forest Meteorology 75: 43-50 https://doi.org/10.1016/0168-1923(94)02198-S
  28. Mihalakakou, G., M. Santamouris, J. O. Lewis, and D. N. Asimakopoulos(1997) On the application of the energy balance equation to predict ground temperature profiles. Solar Energy 60(3): 181-190 https://doi.org/10.1016/S0038-092X(97)00012-1
  29. Myers, G. E.(1971) Analytical Methods in Conduction Heat Transfer. New York: McGraw-Hill
  30. Oliveti, G., N. Arcuri, and S. Ruffolo(2003) Experimental investigation on thermal radiation exchange of horizontal outdoor surfaces. Building and Environment 83: 83-89
  31. Pomerantz, M., B. Pon, H. Akbari, and S. C. Chang(2000) The Effect of Pavement's Temperatures on Air Temperature in Large Cities. Berkley CA: Lawrence Berkley National Laboratory
  32. Porte-Agel, F., M. B. Parlange, A. T. Cahill, and A. Gruber(2000) Mixture of time scales in evaporation: desorption and self-similarity of energy fluxes. Agronomy Journal 92: 832-836 https://doi.org/10.2134/agronj2000.925832x
  33. Qin, Z., P. Berliner, and A. Karnieli(2002) Numerical solutions of a complete surface energy balance model for simuIation of heat fluxes and surface temperature under bare soil environment. Applied Mathematics and Computation 130: 171-200 https://doi.org/10.1016/S0096-3003(01)00089-3
  34. Warrick, A. W.(2002) Soil Physics Companion. Boca Raton: CRC Press