Film-Forming Properties of Proteinaceous Fibrous Material Produced from Soybean Fermented by Bacillus natto

  • Park Sang-Kyu (Bio/Molecular Informatics Center, Konkuk University) ;
  • Bae Dong-Ho (Division of Bioscience & Biotechnology, Konkuk University)
  • Published : 2006.07.01

Abstract

The effectiveness of a proteinaceous fibrous material formed during commercial fermentation of soy protein (PFSP) and cysteine addition were evaluated in order to improve on the properties of soy protein-based films. Nine types of films were prepared at pH 7, 9, and 11, with heat treatments at $70^{\circ}C\;and\;90^{\circ}C$ for 30 min, by casting 5% (w/w) PFSP aqueous solution, containing 2.25% (w/w) glycerol, on to polystyrene plates. The tensile strength (TS) of films ranged from 3.88 to 6.87 MPa. The highest puncture strength (PS) was observed with pH 7.0 films prepared from PFSP solution heated at $70^{\circ}C$ (P<0.05). Alkaline pH and temperature caused a decrease in both the TS and PS of the films. The thickness of films ranged from $58\;to\;74{\mu}m$. Water vapor permeabilities of the films decreased with increasing pH and temperature. To produce films from PFSP, pH value of 7.0 to 9.0 and heat treatment of $70^{\circ}C\;to\;90^{\circ}C$ were needed. A soluble nature of PFSP films in water might be useful for preparation of hot water-soluble pouches. Cysteine addition could be necessary to produce films with increased TS and enhanced barrier properties. The combination treatment that provided the best combination of barrier and mechanical properties was the PFSP film prepared at pH 7.0 with addition of 1% cysteine. The films were good oxygen barriers.

Keywords

References

  1. AOAC. 1990. Official Methods of Analysis, 15th Ed. Association of Official Analytical Chemists, Arlington, VA, U.S.A
  2. BeMiller, J. N. and R. L. Whistler. 1996. Carbohydrates, In O. R. Fenema (ed.), Food Chemistry, 3rd Ed. Marcel Dekker Inc., NY, U.S.A
  3. Brandenburg, A. H., C. L. Weller, and R. F. Testin. 1993. Edible films and coatings from soy protein. J. Food Sci. 58: 1086-1089 https://doi.org/10.1111/j.1365-2621.1993.tb06120.x
  4. Francis, F. J. and F. M. Clydesdale. 1975. Food Colorimetry: Theory and Applications. AVI, Westport, CT, U.S.A
  5. Fukushima, D. and J. Van Buren. 1970. Mechanisms of protein insolubilization during the drying of soy milk. Role of disulfide and hydrophobic bonds. Cereal Chem. 47: 687-696
  6. Gennadios, A, A. H. Brandenburg, C. L. Weller, and R. F. Testin. 1993. Effect of pH on properties of wheat gluten and soy protein isolate films. J. Agric. Food Chem. 41: 1835-1839 https://doi.org/10.1021/jf00035a006
  7. Gennadios, A, T. H. McHugh, C. L. Weller, and J. M. Krochta. 1994. Edible coating and films based on proteins, pp. 201-277. In Krochta, J. M., E. A Baldwin, and M. O. Nisperos-Carriedo (eds.), Edible Coatings and Films to Improve Food Quality. Technomic Publishing Co., Inc., Lancaster, PA, U.S.A
  8. Kester, J. J. and O. R. Fennema. 1986. Edible films and coatings: A review. Food Technol. 40: 47-59
  9. Kim, H. W., E. J. Ko, S. K. Lee, S. D. Ha, K. B. Song, S. K. Park, D. H. Chung, K. S. Youn, and D. H. Bae. 2005. Physical, mechanical, and antimicrobial properties of edible film produced from defatted soybean meal fermented by Bacillus subtilis. J. Microbiol. Biotechnol. 15: 815-822
  10. Kim, H. W., K. M. Kim, E. J. Ko, S. K. Lee, S. D. Ha, K. B. Song, S. K. Park, K. S. Kwon, and D. H. Bae. 2004. Development of antimicrobial edible film from defatted soybean meal fermented by Bacillus subtilis. J. Microbiol. Biotechnol. 14: 1303-1309
  11. Krochta, M. J. and C. D. De Mulder-Johnston. 1997. Edible and biodegradable polymer films: Challenges and opportunities. Food Technol. 51: 61-74
  12. Kunte, L. F., A Gennadios, S. L. Cuppett, A. Hanna, and C. L. Weller. 1997. Cast films from soy protein isolates and fractions. Cereal Chem. 74: 115-118 https://doi.org/10.1094/CCHEM.1997.74.2.115
  13. Lee, H. J, K. W. Lee, K. H. Kim, H. K. Kim, and H. J. Lee. 2004. Antitumor activity of peptide fraction from traditional Korean soy sauce. J. Microbiol. Biotechnol. 14: 628-630
  14. McHugh, T. H., R. Avena-Bustillos, and J. M. Krochta. 1993. Hydrophilic edible films: Modified procedure for water vapor permeability and explanation for thickness effect. J. Food Sci. 58: 889-903
  15. McHugh, T. H., J. F. Aujard, and J. M. Krochta. 1994. Plasticized whey protein edible films: Water vapor permeability properties. J. Food Sci. 59: 416-419,423 https://doi.org/10.1111/j.1365-2621.1994.tb06980.x
  16. Parris, N. and D. R. Coffin. 1997. Composition factors affecting the water vapor permeability and tensile properties of hydrophilic zein films. J. Agric. Food Chem. 45: 1596-1599 https://doi.org/10.1021/jf960809o
  17. Reed, S. M. and C. Noricote. 1983. Chemical and immunological similarities between the phloem proteins of three genera ofthe curcubitaceae. Planta 158: 119-127 https://doi.org/10.1007/BF00397704
  18. Roy, S., C. L. Weller, M. G. Zeece, and R. F. Testin. 1995. Effect of heat on the physical and molecular properties of wheat gluten films. 12E-14. 1995 Annual Meeting of the Institute of Food Technologists, Anaheim, CA, Institute of Food Technologists, Chicago, IL, U.S.A
  19. Sabato, S. F., B. Ouattara, H. Yu, G. D' Aprano, C. Le Tien, M. A. Mateescu, and M. Lacroix. 2001. Mechanical and barrier properties of cross-linked soy and whey protein based films. J. Agric. Food Chem. 49: 1397-1403 https://doi.org/10.1021/jf0005925
  20. Salame, M. and S. Steingiser. 1977. Barrier polymers. Polym. Plast. Technol. Eng. 8: 155-175 https://doi.org/10.1080/03602557708545034
  21. Stuchell, Y. M. and M. J. Krochta. 1994. Enzymatic treatments and thermal effects on edible soy protein films. J. Food Sci. 59: 1332-1337 https://doi.org/10.1111/j.1365-2621.1994.tb14709.x
  22. Wall, J. S., M. Friedman, L. H. Krull, J. F. Cavins, and A. C. Beckwith. 1968. Chemical modification of wheat gluten proteins and related model systems. J. Polymer Sci. 24: 147-161
  23. Wu, L. C. and R. P. Bates. 1973. Soy protein-lipid films: Studies on the film formation phenomenon. J. Food Sci. 37: 36-39 https://doi.org/10.1111/j.1365-2621.1972.tb03379.x
  24. Yang, J. I., S. H. Lee, D. H. Hahm, I. H. Kim, and S. Y. Choi. 2004. Enhancement of calcium-binding quality of proglycinin peptides by chemical phosphorylation. J. Microbiol. Biotechnol. 14: 607-611