DOI QR코드

DOI QR Code

Evaluation of a Hydro-ecologic Model, RHESSys (Regional Hydro-Ecologic Simulation System): Parameterization and Application at two Complex Terrain Watersheds

수문생태모형 RHESSys의 평가: 두 복잡지형 유역에서의 모수화와 적용

  • Lee, Bo-Ra (Department of Environmental Science, Kangwon National University) ;
  • Kang, Sin-Kyu (Department of Environmental Science, Kangwon National University) ;
  • Kim, Eun-Sook (Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University) ;
  • Hwang, Tae-Hee (Department of Geography, University of North Carolina) ;
  • Lim, Jong-Hwan (Division of Forest Environment, Korea Forest Research Institute) ;
  • Kim, Joon ( Global Environment Laboratory & Department of Atmospheric Sciences, Yonsei University)
  • 이보라 (강원대학교 자연과학대학 환경과학과) ;
  • 강신규 (강원대학교 자연과학대학 환경과학과) ;
  • 김은숙 (서울대학교 환경대학원 환경계획학과) ;
  • 황태희 ;
  • 임종환 (국립산림과학원 산림환경부 산림생태과) ;
  • 김준 (연세대학교 지구환경연구소 대기과학과)
  • Published : 2007.12.30

Abstract

In this study, we examined the flux of carbon and water using an eco-hydrological model, Regional Hydro-Ecologic Simulation System (RHESSys). Our purposes were to develop a set of parameters optimized for a well-designed experimental watershed (Gwangneung Research Watershed, GN) and then, to test suitability of the parameters for predicting carbon and water fluxes of other watershed with different regimes of climate, topography, and vegetation structure (i.e Gangseonry Watershed in Mt. Jumbong, GS). Field datasets of stream flow, soil water content (SWC), and wood biomass product (WBP) were utilized for model parameterization and validation. After laborious parameterization processes, RHESSys was validated with the field observations from the GN watershed. The parameter set identified at the GN watershed was then applied to the GS watershed in Mt. Jumbong, which resulted in good agreement for SWC but poor predictability for WBP. Our study showed that RHESSys simulated reliable SWC at the GS by adjusting site-specific porosity only. In contrast, vegetation productivity would require more rigorous site-specific parameterization and hence, further study is necessary to identify primary field ecophysiological variables for enhancing model parameterization and application to multiple watersheds.

전지구적인 생태시스템 안에서 탄소와 물의 흐름은 아주 밀접하게 관련되어 있다. 생태계 물질순환과정을 모사해 주는 모형들은 연구자들이 직접 측정하기 어려운 복잡한 생태계에서의 물질순환 과정들의 상호작용과 그 변화를 예측할 수 있는 도구이다. 이 연구에서는 생태수문모형 RHESSys(Regional Hydro Ecological Simulation System)를 광릉시험림 유역에서 모수화한 후, 다른 지형 조건과 기후 및 식생을 가진 점봉산 강선리 유역에 적용함으로써 RHESSys모수화의 다유역으로의 확장가능성과 문제점 등을 조사하였다. RHESSys는 Geographic Information System(GIS)를 바탕으로 공간적인 탄소와 물 및 영양분의 흐름을 모사하는 생태수문모형이다. 모수화는 광릉시험림 유역의 1982-1999년간 일유량과 나이테 자료로 추정한 임목생장량을 사용하였다. 수직 및 수평 방향의 수리전도도에 관련된 중요 모수들과 임목 생장과 관련된 분배 모수들을 Monte-Carlo 접근법을 사용하여 최적화하였다. 모형결과를 광릉연구지의 실측 토양수분과 비교해 본 결과 RHESSys는 토양수분을 다소 과소평가하는 경향이 있으나, 일변화를 유의하게 잘 모사하였으며, 임목생장량의 연변화를 잘 모사하였다. 광릉연구지에서 개발한 모수를 점봉산 강선리 유역에 적용한 결과, 광릉과 마찬가지로 RHESSys는 토양수분을 다소 과소평가하나 여름철의 중요한 시계열 경향을 유의하게 잘 모사하였다. 또한 실측 공극률의 사용이 모형의 토양수분예측력에 중요함을 확인하였다. 반면에 강선리 유역의 임목생장량에 대해선 모형의 예측력이 높지 않았다. 수문과정 모수에 비해 식생성장 및 분배관련 모수의 경우 단일 유역의 모수화를 타 유역으로 확장하는 데에 상당한 불확실성이 있음을 확인하였다. 각 유역의 임목생장 및 분배 특성을 반영하는 독립적인 모수화 과정이 필요하며 이를 뒷받침해 줄 최소한의 현장측정항목을 발굴하는 후속연구가 필요하다.

Keywords

References

  1. Aber, J. A., and C. A. Federer, 1992: A generalized, lumpedparameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystem. Oecologia 92, 463-474 https://doi.org/10.1007/BF00317837
  2. Band, L. E., D. S. Mackay, I. F. Creed, R. Semkin, and D. Jeffries, 1996: Ecosystem process at the watershed scale: sensitivity to potential climate change. Limnology and Oceanography 41(5), 928-938 https://doi.org/10.4319/lo.1996.41.5.0928
  3. Baron, J. S., M. D. Hartman, T. G. F. Kittel, L. E. Band, D. S. Ojima, and R. B. Lammers, 1998: Effects of land cover, water redistribution, and temperature on ecosystem processes in the South Platte basin. Ecological Applications 8(4), 1037-1051 https://doi.org/10.1890/1051-0761(1998)008[1037:EOLCWR]2.0.CO;2
  4. Csiszar, I., C. O. Justice, A. D. McGuire, M. A. Cochrane, D. P. Roy, F. Brown, S. G. Conard, P. G. H. Frost, L. Giglio, C. Elvidge, M. D. Flannigan, E. S. Kasischke, D. J. McRae, T. S. Rupp, B. J. Stocks, D. L. Verbyla, 2004: Land Use and Fires, Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth's Surface. Gutman, G. Janetos, A. C. Justice, C. O. Moran, E. F. Mustard, J. F. Rindfuss, R. R. Skole, D. Turner II, B. L. Cochrane, M. A. (Eds.), Dordrecht, Netherlands, Kluwer, Chapter 19
  5. Eum, S., S. Kang, and D. Lee, 2005: Climatic controls on net primary production (NPP) of a rugged forested landscape in the mid-western Korean Peninsula. Korean Journal of Agricultural and Forest Meteorology 7(1), 66-77
  6. Famiglietti, J. S., and E. F. Wood, 1994: Multiscale modeling of spatially variable water and energy balance processes. Water Resources Research 30(11), 3061-3078 https://doi.org/10.1029/94WR01498
  7. Go, D., 1999: Disturbance regime of a temperate hardwood forest as deduced from treeing patterns: Mt. Jumbong forest in Korea. M. D. Thesis, Seoul National University, Seoul, Korea
  8. Hwang, T., S. Kang, Y. Kim, J. Kim, D. Lee, and L. E. Band, 2007: Evaluatingdrought effect on MODIS Gross Primary Production (GPP) with an eco-hydrological model in the Mountainous Forest, East Asia. Global Change Biology (in press)
  9. Jung, Y. H., K. H. Kim, C. Y. Lee, C. G. Jung, J. Y. Yu, and J. H. Jeun, 2002: Document of Long-term monitoring for forest hydrology. Korea Forest Research Institute, Seoul, Korea
  10. Kang, S., S. Doh, D. Lee, D. Lee, L. J. Virginia, and J. S. Kimball, 2003: Topographic and climate controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology 9, 1427-1437 https://doi.org/10.1046/j.1365-2486.2003.00668.x
  11. Kang, S., J. S. Kimball, and S. W. Running, 2006a: Simulating effects of fire disturbance and climate change on regional forest productivity and evapotranspiration in boreal ecosystems. Science of The Total Environment 362, 85-102 https://doi.org/10.1016/j.scitotenv.2005.11.014
  12. Kang, S., D. Lee, J. Lee, and S. W. Running, 2006b: Topographic and climatic controls on soil environments and net primary production in a rugged temperate hardwood forest in Korea. Ecological Research 21(1), 64-74 https://doi.org/10.1007/s11284-005-0095-0
  13. Kim, E., S. Kang, B. R. Lee, K. Kim, and J. Kim, 2007: Parameterization and application of Regional Hydro- Ecologic Simulation System (RHESSys) for integrating the eco-hydrological processes in the Gwangneung headwater catchment. Korean Journal of Agricultural and Forest Meteorology 9(2), 121-131 https://doi.org/10.5532/KJAFM.2007.9.2.121
  14. Kim, S., 2005: Spatial analysis of evapotranspiration in a forested watershed using energy balance model and RHESSys. M. D. Thesis, Seoul National University, Seoul, Korea
  15. Kim, Y., 2006: Annual growth of standing biomass estimated with tree-ring data and biomass equation at a Gwangneung deciduous forest, Korea. M. D. Thesis, Seoul National University, Seoul, Korea
  16. Landsberg, J. J., and R. H. Waring, 1997: A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management 95, 209-228 https://doi.org/10.1016/S0378-1127(97)00026-1
  17. Lee, H. Y., 2003: GIS: Geographic Information System, Bum Moon Sa, 606pp
  18. Lim, J. H., 1998: A forest dynamics model based on topographically-induced heterogeneity in solar radiation and soil moisture on the Kwangneung Experimental Forest. Ph. D. Thesis, Seoul National University, Seoul, Korea
  19. Lim, J. H., J. H. Shin, G. Z. Jin, J. H. Chun, and J. S. Oh, 2003: Forest stand structure, site characteristics and carbon budget of Kwangneung natural forest in Korea. Korean Journal of Agricultural and Forest Meteorology 5(2), 101-109
  20. Law, B. E., D. Turner, J. Campbell, O. J. Sun, S. Vantuyl, W. D. Ritts, and W. B. Cohen, 2004: Disturbance and climate effects in carbon stocks and fluxes across Western Oregon USA. Global Change Biology 10, 1429-1444 https://doi.org/10.1111/j.1365-2486.2004.00822.x
  21. Lee, G. Y., S. H. Kim, K. H. Kim, and H. S. Lee, 2005: Analysis of soil moisture recession characteristics on hillslope through the intensive monitoring using TDR. Korean Journal of Agricultural and Forest Meteorology 7(1), 77-91. (in Korean with English Abstract)
  22. McMurtrie, R. E., D. A. Rook, and F. M. Kelliher, 1990: Modelling the yield of Pinus radiata on a site limited by water and nutrition. Forest Ecology and Management 30, 381-413 https://doi.org/10.1016/0378-1127(90)90150-A
  23. Meentemeyer, R. K., A. Moody, and J. Franklin, 2001: Landscape-scale patterns of shrub-species abundance in California chaparral. Plant Ecology 156, 19-41 https://doi.org/10.1023/A:1011944805738
  24. Ojima, D. S., D. S. Schimel, W. J. Parton, and C. E. Owensby, 1994: Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24, 67-84 https://doi.org/10.1007/BF02390180
  25. Oh, J. S., J. H. Shim, and J. H. Lim, 2000: Long-term ecological research programme in Forestry Research Institute, Korea. Korea Journal of Ecology 23, 131-134
  26. Parton, W. J., W. B. Stewart, and C. V. Cole, 1988: Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry 5, 109-131 https://doi.org/10.1007/BF02180320
  27. Running, S. W., and J. C. Coughlan, 1988: A general model of forest ecosystem processes for regional applications: I. hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling 42, 125-154 https://doi.org/10.1016/0304-3800(88)90112-3
  28. Tague, C. L., and L. E. Band, 2004: RHESSys: Regional Hydro-Ecologic Simulation System-An object oriented approach to spatially distributed modeling of Carbon, Water, and Nutrient cycling. Earth Interactions 8, 1-42
  29. White, M. A., P. E. Thornton, S. W. Running, and R. R. Nemani, 2000: Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls. Earth Interactions 4, 1-61 https://doi.org/10.1175/1087-3562(2000)004<0001:ITEASI>2.3.CO;2
  30. White, M. A., R. R. Nemani, P. E. Thornton, and S. W. Running, 2002: Satellite evidence of phonological differences between urbanized and rural areas of the eastern United States deciduous broadleaf forest. Ecosystems 5, 260-277 https://doi.org/10.1007/s10021-001-0070-8
  31. Zierl, B., H. Bugmann, and C. L. Tague, 2007: Water and carbon fluxes of European ecosystem: An evaluation of the ecohydrological model RHESSys. Hydrological Processes 21(25), 3391-3408 https://doi.org/10.1002/hyp.6554

Cited by

  1. Inter-annual and inter-plot variations of wood biomass production as related to biotic and abiotic characteristics at a deciduous forest in complex terrain, Korea vol.25, pp.4, 2010, https://doi.org/10.1007/s11284-010-0705-3
  2. Modelling Analysis of Climate and Soil Depth Effects on Pine Tree Dieback in Korea Using BIOME-BGC vol.18, pp.4, 2016, https://doi.org/10.5532/KJAFM.2016.18.4.242
  3. Regional parameterization of canopy onset models using MODIS and flowering onset data vol.247, 2012, https://doi.org/10.1016/j.ecolmodel.2012.08.026
  4. Assessing Climate Change Impact on Hydrological Components of Yongdam Dam Watershed Using RCP Emission Scenarios and SWAT Model vol.56, pp.3, 2014, https://doi.org/10.5389/KSAE.2014.56.3.019
  5. Development of Distributed Ecohydrologic Model and Its Application to the Naeseong Creek Basin vol.46, pp.11, 2013, https://doi.org/10.3741/JKWRA.2013.46.11.1053