Thermotropic Liquid Crystalline Properties of Cholesteryloxycarbonated and (8-Cholesteryloxycarbonyl) heptanoated Disaccharides

콜레스테릴옥시카본화 그리고 (8-콜레스테릴옥시카보닐)헵타노화 이당류들의 열방성 액정 특성

  • Jeong, Seung-Yong (Department of Polymer Science and Engineering, Dankook University) ;
  • Ma, Yung-Dae (Department of Polymer Science and Engineering, Dankook University)
  • 정승용 (단국대학교 고분자공학과) ;
  • 마영대 (단국대학교 고분자공학과)
  • Published : 2007.01.31

Abstract

Fully cholesteryloxycarbonated and (8-cholesteryloxycarbonyl) heptanoated disaccharide derivatives were synthesized by reacting cellobiose, maltose, and lactose with cholesteryl chloroformate or 8- cholesteryloxycarbonylheptanoyl chloride, and their thermotropic liquid crystalline properties were investigated. All the cholesteryloxycarbonated derivatives (CH1DSs) formed enantiotropic cholesteric phases, whereas all the (8-cholesteryloxycarbonyl) heptanoated derivatives (CH8DSs) exhibited monotropic cholesteric phases with left-handed helicoidal structures whose optical pitches (${\lambda}m's$) decrease with increasing temperature. All the CH1DSs, contrast with the CH8DSs, did not display reflection colors over the full cholesteric range, suggesting that the helicoidal twisting power of the cholesteryl group highly depends on the length of the spacer joining the cholesteryl group to the disaccharide chain. The thermal stability and degree of order in the mesophase and the temperature dependence of the ${\lambda}m$ observed for EH8DSs were entirely different from those reported for the cholesterol-bearing dimers and triplet and the (8-cholesteryloxycarbonyl) heptanoated polysaccharide derivatives. The results were discussed in terms of the difference in the number of the mesogenic units per mole of repeating unit and the flexibility of the main chain.

셀로비오스 말토오스 그리고 락토오스를 콜레스테릴 클로로포메이트 또는 (8-콜레스테릴옥시카보닐)헵타노일 클로라이드와 반응시켜 완전치환 콜레스테릴옥시카본화 그리고 (8-콜레스테릴옥시카보닐)헵타노화 이당류 유도체들을 합성함과 동시에 이들의 열방성 특성들을 검토하였다. 모든 콜레스테릴옥시카본화 유도체들(CH1DSs)은 쌍방성 콜레스테릭 상들을 형성하는 반면 모든 (8-콜레스테릴옥시카보닐)헵타노화 유도체들(CH8DSs)은 좌측방향의 나선구조를 지니며 온도상승에 의해 광학피치들(${\lambda}m's$)이 감소하는 단방성 콜레스테릭 상들을 형성하였다. 모든 CH1DSs들은 CH8DSs들과 달리 콜레스테릭 상의 전 범위에서 반사색깔을 나타내지 않았다. 이러한 사실은 콜레스테릴 그룹에 의한 나선의 비틀림력은 콜레스테릴 그룹과 이당류 사슬을 연결하는 스페이서의 길이에 민감하게 의존함을 시사한다. CH8DSs들에서 관찰되는 액정 상의 열적 안정성과 질서도 그리고 ${\lambda}m$의 온도의존성은 콜레스테릴 그룹을 지닌 dimer들과 triplet 그리고 (8-콜레스테릴옥시카보닐)헵타노화 다당류들에 보고된 결과와 전혀 달랐다. 이들의 결과를 반복단위 몰당의 mesogenic 단위들의 수와 주사슬의 유연성의 차이와의 관련하에서 검토하였다.

Keywords

References

  1. D. Blunk, K. Praefcke, and V. ViII, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. ViiI. Editors, Wiley-VCH, Weinbeim-New York, Vol 3, Chap. VI, p 305 (1998)
  2. A. N. Cammidge and R. J. Bushby, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinbeim-New York, Vol 2B, Chap. VII, p 693 (1998)
  3. J. W. Gray, Liq. Cryst., 24, 25 (1998)
  4. T. Hanemann, E. Schumacher, W. Haase, and F. W. Lichtenthaler, Liq. Cryst., 22, 47 (1997)
  5. H. A. Van Doren, A. M Van Der Heijden, A. T. J. W. De Goede, F. V. Rantwijk, and H. V. Bekkum, Liq. Cryst., 27, 63 (2000)
  6. M. Hein, R. Miethchen, D. Schwaebisch, and C. Schick, Liq. Cryst., 27, 163 (2000)
  7. C. Zur, A. O. Miller, and R. Miethchen, Liq. Cryst., 24, 695 (1998)
  8. P. Bault, P. Gode, G. Goethals. J. W. Goodby, J. A. Haley, S. M. Kelly, G. H. Mehl, G. Ronco, and P. Villa, Liq. Cryst., 25, 31 (1998)
  9. G. John, H. Minamikawa, M. Masuda, and T. Shimizu, Lia. Cryst., 30, 747 (2003) https://doi.org/10.1080/0267829021000047516
  10. J. H. Jung, G. John, K. Yoshida, and T. Shimizu, J. Am. Chem. Soc., 124, 10674 (2002)
  11. M. Hein and R. Miethchen, Teterhydron Lett., 39, 6679 (1998)
  12. B. J. Boyd. I. Krodkiewska, C. J. Drummond, and F. Grieser, Langmuir, 18, 597 (2002)
  13. T. Fukuda, Y. Tsujii, and T. Miyamoto, Macromol. Symp., 99, 257 (1995)
  14. F. Duminique, D. Lafont, P. Boullanger, G. Mackenzie, G. H. Mehl, and J. W. Goodbv, J. Am. Chem. Soc., 124, 13737 (2002)
  15. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudholter, Liq. Cryst.. 18, 851 (1995)
  16. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudholter, J. Mater. Chem., 6, 1469 (1996)
  17. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudholter, Thin Solid Films, 284-285, 308 ( 1996)
  18. C. V. Yelamaggad, A. Srikrishna, D. S. Shankar Rao, and S. Krishna Prasad, Liq. Cryst., 26, 1547 (1999) https://doi.org/10.1080/026782999204345
  19. S. W. Cha, J. - I. Jin, M. Laguerre, M. F. Achard, and F. Hardouin, Liq. Cryst., 26, 1325 (1999)
  20. F. Hardouin, M. F. Achard, M. Laguerre, J.-1. Jin, and D.-H. Ko, Liq. Cryst., 26, 589 (1999)
  21. J.-W. Lee, Y.-S. Park, J.-I. Jin, M. F. Achard, and F. Hardouim, J. Mater. Chem., 13, 1367 (2003) https://doi.org/10.1039/b211932c
  22. K.-H. Lee, J.-W. Lee, and J.-I. Jin, Liq. Cryst., 28, 1591 (2001)
  23. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudholter, Liq, Cryst., 27, 1515 (2000)
  24. C. V. Yelamaggad, U. S. Hirernath, and D. S. Shankar Rao, Liq. Cryst., 28, 351 (2001) https://doi.org/10.1080/02678290010004984
  25. C. V. Yelamaggad, S. Anitha Nagamani, U. S. Hirernath, and G. G. Nair, Liq Cryst., 28, 1009 (2001) https://doi.org/10.1080/02678290010004984
  26. V. Ajay Mallia and S. Das, Liq. Cryst., 28, 259 (2001) https://doi.org/10.1080/02678290010004984
  27. K-N. Kim, E.-D. Do, Y. - W. Kwon, and J. - I. Jin, Liq. Cryst., 32, 229 (2005) https://doi.org/10.1080/02678290412331329305
  28. A. T. M. Marcelis, A. Koudijs, E. A. Klop, and E. J. R. Sudholter, Liq. Cryst., 28, 881 (2001) https://doi.org/10.1080/02678290010004984
  29. S. W. Cha, J. - I. Jin, M. F. Achard, and F. Hardouin, Liq. Cryst., 29, 755 (2002)
  30. C. V. Yelamaggad, S. Amitha Nagarnani, T. Fujita, and N. Iyi, Liq. Cryst., 29, 1393 (2002)
  31. C. V. Yelamaggad, M. Mathews, T. Fujita, and N. Iyi, Liq, Cryst., 30, 1079 (2003) https://doi.org/10.1080/0267829031000152987
  32. C. V. Yelamaggad, S. Anita Nagamani, U. S. Hiremath, D. S. Shankar Rao, and S. Krishna Prasad, Mol. Cryst. Liq. Cryst., 397, 207 (2003) https://doi.org/10.1080/714965611
  33. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudholter, Mol. Cryst. Liq. Cryst., 411, 193 (2004) https://doi.org/10.1080/15421400490435035
  34. C. T. Imrie and G. R. Luckhurst, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, M.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 2B, Chap. X. p 801 (1998)
  35. Y.-D. Ma, S.-Y. Jeong, and J.-H. Choi, Industrial Technology Research Paper (Dankook University), 2, 49 (2001)
  36. S. Abraham, V. A. Milla, K V. Ratheesh, N. Tamaoki, and S. Das, J. Am. Chem. Soc., 128, 7692 (2006) https://doi.org/10.1021/ja061575k
  37. V. A. Milla and N. Tamaoki, Chem. Mater., 15, 3237 (2003) https://doi.org/10.1021/cm034127+
  38. J. -I. Jin, Mol. Cryst. Liq. Cryst., 267, 249 (1995)
  39. N. Tamaoki, H. Matsuda, and A. Takahashi, Liq. Cryst., 28, 1823 (2001) https://doi.org/10.1080/02678290010004984
  40. E.-D. Do, K-N. Kim, Y.-W. Kwon, and J.-L Jin, Liq. Cryst., 33, 511 (2006) https://doi.org/10.1080/02678290600617546
  41. P. J. Le Masurier and G. R. Luckhurst, Liq. Cryst., 25, 63 (1998)
  42. A. E. Blatch and G. R. Luckhurst, Liq. Cryst., 27, 775 (2000)
  43. C. V. Yelamaggad, S. Anitha Nagarnani, U. S. Hiremath, D. S. Shankar Rao, and S. Krishna Rpasad, Liq. Cryst., 29, 1401 (2002)
  44. S. Diez, D. A. Dunmur, M. R. De La Fuente, P. K Karahaliou, G. Mehl, T. Meyer, M. A. P. J ubindo, and D. J. Photinos, Liq. Cryst., 30, 1021 (2003) https://doi.org/10.1080/0267829031000152969
  45. C. V. Yelarnaggad, M. Mathews, U. S. Hiremath, G. G. Nair, D. S. Shankar Rao, and S. Krishna Prasad, Liq. Cryst., 30, 899 (2003) https://doi.org/10.1080/0267829031000138587
  46. T. Pfeutter, D. Hanft, and P. Strohriegl, Liq. Cryst., 29, 1555 (2002)
  47. A. Del Campo, A. Meyer, E. Perez, and A. Bello, Liq. Cryst., 31, 109 (2004) https://doi.org/10.1080/0267829032000159105
  48. B.-K So, M.-C. Jang, J.-H, Park, KY. Lee, H.-H. Song, and S.-M. Lee, Optical Materials, 21, 685 (2002)
  49. P. A. Henderson and C. T. Imrie, Macromolecules, 38, 3307 (2005) https://doi.org/10.1021/ma0502304
  50. A. Takaragi, M. Sugiura, M. Minoda, T. Miyamoto, and J. Watanabe, Macromol. Chem. Phys., 198, 2583 (1997) https://doi.org/10.1002/macp.1997.021980407
  51. N. Laurent, D. Lafont, F. Dumoulin, P. Boullanger, G. Mackenzie, P. H. Kouwer, and J. W. Goodby, J. Am. Chem. Soc., 125, 15499 (2003) https://doi.org/10.1021/ja037347x
  52. J.-H. Kim and Y.-D. Ma. J. Korean Ind. Eng. Chem., 15, 113 (2004)
  53. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer (Korea), 28, 92 (2004)
  54. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 28, 41 (2004)
  55. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 30, 338 (2006)
  56. S.-Y. Jeong, J.-H. Jeong, Y.-D. Ma, and Y. Tsuiii, Polymer(Kerea), 25, 279 (2001)
  57. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 30, 35 (2006) https://doi.org/10.1016/0032-3861(89)90379-0
  58. K Shoji, Y. Nakajima, E. Veda, and M. Takeda, Polym. J., 17 1029 (1985) https://doi.org/10.1295/polymj.17.985
  59. T. Oishi, Y. Otsubo, and M. Fujimoto, Polyrn, J., 24 527 (1992)
  60. N. Yao and A. M. Jameison, Polymer, 41 2925 (2000)
  61. T. Mihara, T. Uedaira, and N. Koide, Liq. Cryst., 29 855 (2002)
  62. M. Sugiura, M. Minoda, J. Watanabe, T. Fukuda, and T. Miyamoto, Bull. Chem. Soc., Jpn., 65, 1939 (1992)
  63. S.-Y. Jeong and Y.-D. Ma, to be pulished
  64. K.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer (Korea), 25, 545 (2001)
  65. H. Ogawa, E. Stibal-Fischer, and H. Finkelmann, Macromol. Chem. Phys., 205, 593 (2004) https://doi.org/10.1002/macp.200300231
  66. L.-M. Liu, B.-Y. Zhang, C.-S. Cheng, and Y.-Y. Zheng, J. Appl. Polym. Sci., 91 773 (2004) https://doi.org/10.1002/app.13041
  67. J.-S. Hu, B.-Y. Zhang, Y.-G. Jia, and Y. Yang, Polym. J.,35, 160 (2003) https://doi.org/10.1295/polymj.35.160
  68. B.-Y. Zhang, J.-S. Hu, Y.-G. Jia, and B.-G. Du, Macromol. Chem. Phys., 204, 2123 (2003) https://doi.org/10.1002/macp.200350072
  69. J.-S. Hu, B.-Y. Zhang, Y.-G. Jia, and S. Chern, Macromolecules, 36, 3060 (2003)
  70. B. - L. Zhang, J.S. Hu, F.-B. Meng, and B.-Y. Zhang, J. Appl. Polym. Sci., 93, 2511 (2004) https://doi.org/10.1002/app.20692
  71. C.-I. Oh, M. Sc, Dissertation, Dankook University, 1996
  72. H. Jeong, M. Sc. Dissertation, Dankook University, 1997
  73. S.-Y. Jeong and Y.-D. Ma, unpublished results
  74. F. Branolenburger, B. Matthes, K. Seifert, and P. Strohriegl, Liq. Cryst., 28, 1035 (2001) https://doi.org/10.1080/02678290010004984
  75. X. L. Piao, J.-S. Kim, Y.-K. Yun, J.-I. Jin, and S.-K. Hong, Macromolecules, 30, 2294 (1997)
  76. V. Percec, A. D. Asandai, D. H. Hill, and D. Crawford, Macromolecules, 32, 2597 (1999)
  77. J. W. Lee, J.-I. Jin, B.-W. Jo, J.-S. Kim, W.-c. Zin, and Y.-S. Kang. Acta Polym., 50, 399 (1999)
  78. J. W. Y. Lam, X. Kong, Y. Dong, K. K. L. Cheu, K. Xu, and B. Z. Tang, Macromolecules, 33, 5027 (2000)
  79. A. Takada, K. Fujii, J. Watanabe, T. Fukuda, and T. Miyamoto, Macromolecules, 27, 1651 (1994)
  80. X. Qu, A. Wirsen, and A.-C. Aebertson. Polymer, 41, 4841 (2000)
  81. S. K. Rath and R. P. Singh, J. Appl. Polym. Sci., 70, 1795 (1998)
  82. C. Xiao, S. Gao, and L. Zhang, J. Appl. Polym, Sci., 77, 617 (2000)
  83. V. D. Athawale and S. C. Rathi, Eur. Polym. J., 33, 1067 (1997) https://doi.org/10.1016/S0014-3057(96)00303-5
  84. C. Xiao, Y. Lu, H. Liu, and L. Zhang, J. Appl. Polym. Sci., 80, 26 (2001) https://doi.org/10.1002/1097-4628(20010404)80:1<1::AID-APP1067>3.0.CO;2-Z
  85. H. Hatakeyama and Y. Izuta, Macromol. Symp., 130, 127 (1998)
  86. J.-X. Guo and D. G. Gray, Cellulosic Polymers, Blends and Composites, R. D. Gilbert, Editor, Hanser Verlag, Munich, Chap. 3, p 25 (1994)
  87. T. Kondo and T. Miyamoto, Polymer, 39, 1123 (1998)
  88. Y.-D. Ma and S.-Y. Jeong, Industrial Technology Research Paper (Dankook University), 5, 21 (2004)
  89. Y.-D. Ma and S.-Y. Jeong, Industrial Technology Research Paper (Dankook University), 6, 21 (2005)
  90. Y.-D. Ma and S.-Y. Jeong, Industrial Technology Research Paper (Dankook University), 6, 1 (2005)
  91. H. de Vires, Acta Crystallogr., 4, 219 (1951)
  92. S.-Y. Jeong, J.-H. Choi, and Y.-D. Ma, Polymer(Korea), 26, 523 (2002)