Cyanobacterial Development and Succession and Affecting Factors in a Eutrophic Reservoir

부영양 저수지에서 남조류의 발달과 천이 및 영향 요인

  • Kim, Ho-Sub (Han River Environment Research Laboratory, National Institute of Environmental Research) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University) ;
  • Kong, Dong-Soo (Han River Environment Research Laboratory, National Institute of Environmental Research)
  • 김호섭 (국립환경과학원 한강물환경연구소) ;
  • 황순진 (건국대학교 환경과학과) ;
  • 공동수 (국립환경과학원 한강물환경연구소)
  • Published : 2007.03.30

Abstract

This study was conducted to evaluate the causes and effects of cyanobacterial development and succession in a shallow eutrophic reservoir from March 2003 to February 2004. Phytoplankton succession, sedimentation rate, and sediment composition were analyzed. Algal bioassay also was conducted with the consideration of light, water temperature and nutrients. Cyanobacteria dominated throughout the year, except for spring season (March${\sim}$April) in which diatoms and flagellates dominated. Total cell density increased in July and November when P loading through inflows was high. Oscillatoria spp. and Aphanizomenon sp. were dominant in May and June, respectively, but replaced with Microcystis spp. in July. Thereafter, Microcystis spp. sustained until December, and again shifted to Oscillatoria spp. and Aphanizomenon sp. The dominance of Oscillatoria spp. in May was accompanied with high TN/TP ratio and the increase of water temperature and light intensity. While the dominance of Microcystis spp. was related with relatively low TN/TP ratio, ranging from 46 to 13 (average: 27). The sedimentation rate was highest in March (0.6 m $day^{-1}$) when diatoms dominated. During the period of cyanobacterial dominance, relatively high sedimentation rate was observed in May (0.4 m $day^{-1}$) and October (0.36m $day^{-1}$). C/N ratio of the sediment ranged $6{\sim}8$. Inorganic P concentration in the pore water was low when DO concentration was < 2 mg $O_2$ $L^{-1}$ in the hypolimnion, reflecting the P release from the sediment. Cyanobacterial growth rate depended on phosphorus concentration and water temperature, and high P concentration compensated for the low temperature in the growth rate. Our results suggest that the potential of cyanobacterial development and substantiality in eutrophic reservoirs be high throughout the year, as being supplied with enough P, and emphasize the consideration of sediment man. agement for the water quality improvement and algal bloom control.

본 연구는 부영양 저수지에서 남조류의 발달과 천이에 영향을 미치는 요인들과 그 결과를 평가하기 위하여, 2003년 3월부터 2004년 2월까지 현장 조사를 통하여 남조류 종조성과 밀도변화, 침전특성, 퇴적물 특성을 분석하였다. 또한 인, 수온, 광도를 달리한 조건에서의 남조류 성장률을 비교하였다. 식물플랑크톤은 봄철(3${\sim}$4월)에 규조류와 편모조류가 우점한 시기를 제외하고는 연중 남조류가 우점하였고, 7월과 11월에 높은 밀도 증가가 관찰되었다. 남조류 우점기간 중 5월에는 Oscillatoria spp., 6월에는 Aphanizomenon sp.이 우점하였고, 7월부터 11월까지는 Microcystis spp.가 우점종으로 나타났다. Oscillatoria spp.가 우점하고 침강율이 높았던 5월에는 수온, 광도 그리고 TN/TP비가 높았던 반면, Microcystis spp.가 우점한 7월부터 11월까지의 TN/TP비는 상대적으로 낮은 범위 (평균 27)를 보였다. 침강속도는 규조류가 우점한 3월 가장 높았고, 남조류의 우점종 기간 중에서는 5월과 10월이 다른 시기와 비교할 때 빨랐다. 퇴적물의 C/N비는 $6{\sim}8$의 범위였고, 간극수내 무기인의 농도는 심층에 산소농도가 희박(<2mg $O_2$ $L^{-1}$)하였던 시기에 감소하였다. 남조류의 성장률은 영양염 농도와 수온에 크게 의존하였고, 특히 높은 인 농도는 낮은 수온에서도 남조류가 발달하는 원인으로 나타났다. 본 연구의 결과는, 인이 충분하게 공급되는 국내의 많은 소형 부영양 저수지에서 연중 남조류의 발달과 지속가능성을 시사하며, 수질개선과 조류제어를 위해 인의 저감(특히, 퇴적층 관리)을 매우 중요하게 고려해야 함을 강조한다.

Keywords

References

  1. 국립환경연구원. 2003. 낙동강수계 수중생태계 수질모델인자조사 최종보고서
  2. 김호섭, 황순진. 2004. 얕은 부영양 저수지의 육수학적 특성: 계절에 따른 수질변화, 육수지 37: 180-192
  3. 김호섭, 황순진. 2005. 얕은 부영양저수지의 동$\cdot$식물플랑크톤 군집변화 특성, 육수지 38: 18-29
  4. 농업기반공사. 2001. 농업용수 수질측정망 조사 보고서
  5. 황순진. 2006. 농업용 저수지의 녹조제어 기법 및 대책. 농어촌과 환경. 통권 제93호(인쇄중)
  6. APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed., APHA-AWWA-WEF, Washington, D.C., USA
  7. Bostrom, B., M. Janson and C. Forsberg. 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. 18: 5-59
  8. Carpenter, S.R. and J.R. Kitchell. 1993. Cascading trophic interactions and lake productivity. Bioscience 35: 634-639 https://doi.org/10.2307/1309989
  9. Cichra, M.F., S. Badylak, N. Henderson, B.H. Rueter and E.J. Philips. 1995. Phytoplankton community structure in the open water zone of a shallow subtropical lake (Lake Okeechobee, Florida, U.S.A.). Arch. fur Hydrobiologie, Advances in Limnology 45: 157-175
  10. Enell, M. and S. Lofgren. 1988. Phosphorus in interstitial water: method and dynamics. Hydrobiologia 170: 103-132 https://doi.org/10.1007/BF00024901
  11. Fujimoto, N. and R. Sudo. 1997. Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N : P supply ratios and temperatures. Limnol. Oceonogr. 42: 250-256 https://doi.org/10.4319/lo.1997.42.2.0250
  12. Hansen, K. 1961. Lakes types and lake sediments. Verh. Int. Ver. Limnol. 14: 285-290
  13. Hwang, S-J., C.G. Yoon, S.K. Kweon. 2003. Water quality and limnology of Korean reservoirs. Paddy and Water Environment 1: 43-52 https://doi.org/10.1007/s10333-003-0010-7
  14. Kappers, F.I. 1984. On population dynamics of the cyanobacterium Microcystis aeruginosa. Ph.D. thesis, University of Amsterdam
  15. Klemer, A.R. 1973. Factors affecting the vertical distribution of a blue-green alga. Ph.D thesis, University of Minnesota
  16. Klemer, A.R. 1976. The vertical distribution of Oscillatoria agardhii var. isothrix. Arch. Hydrobiol. 78: 343-362
  17. Konopka, A.E., A.R. Klemer, A.E. Walsby and B.W. Ibelings. 1993. Effects of macronutrients upon buoyancy regulation by metalimnetic Oscillatoria agardhii in Deming Lake, Minnesota. J. Plankton Res. 15: 1019-1034 https://doi.org/10.1093/plankt/15.9.1019
  18. Kruger, G.H. and J.N. Eloff. 1978. The effect of temperature on specific growth rate and activation energy of Microcystis and Synechococcus isolates relevant to the onset of natural blooms. J. Limnol. Soc. sth. Afr. 4: 9-20
  19. Marker, A.F.H. 1972. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshwater Biol. 2: 361-385 https://doi.org/10.1111/j.1365-2427.1972.tb00377.x
  20. Marker, A.F.H., E.A. Nusch, I. Rai and B. Riemann. 1980. The measurement of photosynthetic pigments in freshwaters and standardization of methods: Conclusions and recommendations. Arch. Hydrobiol. Beih. 14: 91-106
  21. Meyers, P.A. and R. Ishiwatari. 1993. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. OrgGeochum 20: 867-900
  22. Nicklisch, A. and J.G. Kohl. 1983. Growth kinetics of Microcystis aeruginosa (Kutz) Kutz as a basis for modelling its population dynamics. Int. Rev. ges. Hydrobiol. 68: 317-326 https://doi.org/10.1002/iroh.19830680304
  23. Ping, X.L., L. Sixin, T. Huijuan and L. Hong. 2003. The low TN; TP ratio, a cause or a result of Microcystis blooms? Water Res. 37: 2073-2080 https://doi.org/10.1016/S0043-1354(02)00532-8
  24. Redfield, A.C., B.H. Ketchum and F.A. Richards. 1963. The influence of organisms on the composition of sea water. p. 26-27. In: The sea, 2 (M.N. Hill, ed.), Interscience, New York
  25. Reynolds, C.S. 1993. The Ecology of freshwater Phytoplankton. Cambridge University Press, Cambridge, U.K. p. 384
  26. Reynolds, C.S. 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biol. 14: 111-142 https://doi.org/10.1111/j.1365-2427.1984.tb00027.x
  27. Robarts, R.D. and T. Zohary. 1987. Microcystis aeruginosa and underwater light attenuation in a hypertrophic lake (Hartbeespoort Dam, South Africa). J. Ecol. 72: 1001-1017
  28. Romo, R. and R. Miracle. 1994. Long-term phytoplankton changes in a shallow hypertrophic lake, Albufera of Valencia (Spain). Hydrobiologia 275/276: 153-164 https://doi.org/10.1007/BF00026707
  29. Sheffer, M., S. Rinaldi, A. Grangnani, L.R. Mur and E.H. Nes. 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecol. 78: 272-282 https://doi.org/10.1890/0012-9658(1997)078[0272:OTDOFC]2.0.CO;2
  30. Smith, V.H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669-671 https://doi.org/10.1126/science.221.4611.669
  31. Smith, V.H., E. Willen and B. Karlsson. 1987. Predicting the summer peak biomass of four species of blue-green algae (cyanphyta/cyanobacteria) in Swedish lakes. Wat. Res. Bull. 23: 397-402 https://doi.org/10.1111/j.1752-1688.1987.tb00818.x
  32. Tang, E.P.Y., R. Tremblay and W.F. Vincent. 1997. Cyanobacterial dominance of polar freshwater ecosystems: Are high-latitude mat-formers adapted to low temperature. J. Phycol. 33: 171-181 https://doi.org/10.1111/j.0022-3646.1997.00171.x
  33. Thomas, R.H. and A.E. Walsby. 1986. The effects of temperature on recovery of buoyancy by Microcystis. J. Gen. Microbiol. 132: 1665-1672
  34. Trimbee, A.M. and E.E. Prepas. 1987. Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta lakes. Can. J. Fish. Aquat. Sci. 44: 1337-1342 https://doi.org/10.1139/f87-158
  35. Van der Westhuizen, A.J. and J.N. Eloff. 1985. Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006). Planta 163: 55-59 https://doi.org/10.1007/BF00395897
  36. Wasmund, N. 1989. Live algae in deep sediment layers. Int. Rev. Ges. Hydrobiol. 74: 589-597 https://doi.org/10.1002/iroh.19890740602
  37. Watanabae, M.F. and S. Oishi. 1985. Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Applied and Environmental Microbiology 49: 1342-1344
  38. Zevenboom, W., A.B. de Vaate and L.R. Mur. 1982. Assessment of factors limiting growth rate of Oscillatoria agardhii in hypereutrophic Lake Wolderwijd, 1978, by use of physiological indicators. Limnol. Oceanogr. 27: 39-52 https://doi.org/10.4319/lo.1982.27.1.0039