Functional Characteristics of Cyclodextrin Glucanotransferase from Alkalophilic Bacillus sp. BL-31 Highly Specific for Intermolecular Transglycosylation of Bioflavonoids

  • Go, Young-Hoon (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Tae-Kwon (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Kwang-Woo (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Yong-Hyun (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University)
  • Published : 2007.09.30

Abstract

The functional characteristics of a ${\beta}$-cyclodextrin glucanotransferase (CGTase) excreted from alkalophilic Bacillus sp. BL-31 that is highly specific for the intermolecular transglycosylation of bioflavonoids were investigated. The new ${\beta}$-CGTase showed high specificities for glycosyl acceptor bioflavonoids, including naringin, rutin, and hesperidin, and especially naringin. The transglycosylation of naringin into glycosyl naringin was then carried out under the conditions of 80 units of CGTase per gram of maltodextrin, 5 g/l of naringin, 25 g/l of maltodextrin, and 1 mM $Mn^{2+}$ ion at $40^{\circ}C$ for 6 h, resulting in a high conversion yield of 92.1%.

Keywords

References

  1. Akiyama, T., M. Yamada, T. Yamada, and T. Maitani. 2000. Naringin glycosides $\alpha$-glucosylated on ring B found in the natural food additive, enzymatically modified naringin. Biosci. Biotechnol. Biochem. 64: 2246-2249 https://doi.org/10.1271/bbb.64.2246
  2. Bok, S. H., S. H. Lee, Y. B. Park, K. H. Bae, K. H. Son, T. S. Jeong, and M. S. Choi. 1999. Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: Cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids. J. Nutr. 129: 1182-1185 https://doi.org/10.1093/jn/129.6.1182
  3. Chen, Y. T., R. L. Zheng, Z. J. Jia, and Y. Ju. 1990. Flavonoids as superoxide scavengers and antioxidants. Free Radic. Biol. Med. 9: 19-21
  4. Gawande, B. N. and A. Y. Patkar. 2001. Purification and properties of a novel raw starch degrading-cyclodextrin glycosyltransferase from Klebsiella pneumoniae AS-22. Enzyme Microb. Technol. 28: 735-743 https://doi.org/10.1016/S0141-0229(01)00347-7
  5. Kang, S., S. Lee, C. Kwon, and S. Jung. 2006. Solubility enhancement of flavonoids by cyclosophoraose isolated from Rhizobium meliloti 2011. J. Microbiol. Biotechnol. 16: 791-794
  6. Kim, J. H., B. G. Kim, J. A. Kim, Y. H. Park, Y. J. Lee, Y. H. Lim, and J. H. Ahn. 2007. Glycosylation of flavonoids with E. coli expressing glycosyltransferase from Xanthomonas campestris. J. Microbiol. Biotechnol. 17: 539-542
  7. Kitahata, S. and S. Okada. 1974. Action of cyclodextrin glycosyltransferase from Bacillus megaterium strain No. 5 on starch. Agric. Biol. Chem. 38: 2413-2417 https://doi.org/10.1271/bbb1961.38.2413
  8. Kometani, T., T. Nishimura, T. Nakae, H. Takii, and S. Okada. 1996. Synthesis of neohesperidin glycosides and naringin glycosides by cyclodextrin glucanotransferase from an alkalophilic Bacillus species. Biosci. Biotechnol. Biochem. 60: 645-649 https://doi.org/10.1271/bbb.60.645
  9. Kometani, T., Y. Terada, T. Nishimura, H. Takii, and S. Okada. 1994. Purification and characterization of cyclodextrin glucanotransferase from an alkalophilic Bacillus species and transglycosylation at alkaline pHs. Biosci. Biotechnol. Biochem. 58: 517-520 https://doi.org/10.1271/bbb.58.517
  10. Kometani, T., Y. Terada, T. Nishimura, H. Takii, and S. Okada. 1994. Transglycosylation to hesperidin by cyclodextrin glucanotransferase from an alkalophilic Bacillus species in alkaline pH and properties of hesperidin glycosides. Biosci. Biotechnol. Biochem. 58: 1990-1994 https://doi.org/10.1271/bbb.58.1990
  11. Lee, K. W., H. D. Shin, and Y. H. Lee. 2003. Catalytic function and affinity purification of site-directed mutant $\beta$- cyclodextrin glucanotransferase from alkalophilic Bacillus firmus var. alkalophilus. J. Mol. Catal. B Enzym. 26: 157-165 https://doi.org/10.1016/j.molcatb.2003.05.005
  12. Lee, M. S., H. D. Shin, T. K. Kim, and Y. H. Lee. 2004. Purification of $\alpha$-cyclodextrin glucanotransferase excreted from thermophilic Geobacillus thermosacchalytycus and characterization of transglycosylation reaction of glucosides. Kor. J. Microbiol. Biotechnol. 32: 29-36
  13. Lee, S. J., J. C. Kim, M. J. Kim, M. Kitaoka, C. S. Park, S. Y. Lee, M. J. Ra, T. W. Moon, J. F. Robyt, and K. H. Park. 1999. Transglycosylation of naringin by Bacillus stearothermophilus maltogenic amylase to give glycosylated naringin. J. Agric. Food Chem. 47: 3669-3674 https://doi.org/10.1021/jf990034u
  14. Lee, Y. H. and D. C. Park. 1999. Novel heterogeneous carbohydrase reaction systems for the direct conversion of insoluble carbohydrates: Reaction characteristics and their applications. J. Microbiol. Biotechnol. 9: 1-8
  15. Lee, Y. J., B. G. Kim, Y. H. Park, Y. H. Lim, H. G. Hur, and J. H. Ahn. 2006. Biotransformation of flavonoids with O-methyltransferase from Bacillus cereus. J. Microbiol. Biotechnol. 16: 1090-1096
  16. Martins, R. F. and R. Hatti-Kaul. 2002. A new cyclodextrin glycosyltransferase from an alkaliphilic Bacillus agaradhaerens isolate: Purification and characterization. Enzyme Microb. Technol. 30: 116-124 https://doi.org/10.1016/S0141-0229(01)00461-6
  17. Nakamura, N. and K. Horikoshi. 1976. Characterization and some cultural conditions of a cyclodextrin glycosyltransferaseproducing alkalophilic Bacillus sp. Agric. Biol. Chem. 40: 753-757 https://doi.org/10.1271/bbb1961.40.753
  18. Nijveldt, R. J., E. van Nood, D. E. van Hoorn, P. G. Boelens, K. van Norren, and P. A. van Leeuwen. 2001. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 74: 418-425 https://doi.org/10.1093/ajcn/74.4.418
  19. Park, D. C., T. K. Kim, and Y. H. Lee. 1998. Characteristics of transglycosylation reaction of cyclodextrin glucanotransferase in the heterogeneous enzyme reaction system using extrusion starch as a glucosyl donor. Enzyme Microb. Technol. 22: 217-222 https://doi.org/10.1016/S0141-0229(97)00183-X
  20. Ryu, J. Y. and H. G. Hur. 2005. Comparative analyses of flavonoids for nod gene induction in Bradyrhizobium japonicum USDA110. J. Microbiol. Biotechnol. 15: 1280-1285