A Kinetic Study on the Transesterification of Glyceryl Monooleate and Soybean Used Frying Oil to Biodiesel

Lee, Kyu-Wan;Yu, Jin Xian;Mei, Jin Hong;Yan, Li;Kim, Young-Wun;Chung, Keun-Woo

  • Published : 20070900

Abstract

The conversion of used frying oil from soybean oil to biodiesel was performed kinetically in two ways. Firstly, the reaction products were quantified by measuring the amount of glycerol produced to track the overall reaction; secondly, by means of GC with a capillary column, we analyzed each component of soybean oil and methyl oleate from glyceryl monooleate (GMO). The rate equation fits a pseudo-first-order reaction under the reaction conditions: oil-to-methanol molar ratios were 1:10 18 over 0.5 % KOH catalyst. ∼ The formation rate constants of palmitic, oleic, and linoleic acid methyl esters from used frying oil were first calculated. The activation energies were 7.05 kcal/mol for the overall reaction, 16.84∼17.86 kcal/mol for each component of soybean oil, and 11.08 kcal/mol for methyl oleate from GMO.

Keywords

References

  1. S. Hiraoka and S. Yokoyama, RITE Revised report based 2001-2003 (NEDO-GET-9815, 9947)
  2. IEA Bioenergy Task Force team report (2000)
  3. IPCC second report, Climate Change, Cambridge Univ. Press (1995)
  4. Y. Kaya, $CO_2$ Reduction Strategy, Chapter 1, p35-37, RITE report, Nitkankogyo (2000)
  5. China Automobile Association, January (2007)
  6. China Agricultural News, January (2007)
  7. M. P. Dorado, E. Ballesteros, F. J. Lopez, and M. Mittelbach, Energy Fuels, 18, 77 (2004)
  8. A. C. L. Pizzaro and E. Y. Park, Process Biochemistry, 38, 1077 (2003)
  9. S. Zeng, M. Kates, M. A. Dube, and D. D. McLean, Biomass Bioenergy, 30, 267 (2006)
  10. S. Shah, S. Sharma, and M. N. Gupta, Energy Fuels, 18, 154 (2004)
  11. F. Ma, L. D. Clements, and M. A. Hanna, Ind. Eng. Chem. Res., 37, 3768 (1998) https://doi.org/10.1021/ie9704814
  12. B. Freedman, R. O. Butterfield, and E. H. Pryde, J. Am. Oil Chem. Soc., 63, 1375 (1986) https://doi.org/10.1007/BF02673768
  13. H. Noureddini and D. Zhu, J. Am. Oil Chem. Soc., 74, 1457 (1997)
  14. D. Darnoko, Ph. D. Thesis, University of Illinois at Urbana-Champaign, USA (1999)
  15. R. Alcantara, J. Amores, L. Canoria, E. Fidalgo, M. J. Franco, and A. Navarro, Biomass Bioenergy, 18, 515 (2000)
  16. A. V. Tomasevic and S. S. Siler-Marinkovic, Fuel Process. Technol., 81, 1 (2003)
  17. M. J. Haas, P. Michalski, S. Runyon, A. Nunez, and K. M. Scott, J. Am. Oil Chem. Soc., 80, 97 (2003)
  18. KIER test result, Daejeon, Korea (2001)
  19. D. E. Lopez, J. G. Goodwin Jr., D. A. Bruce, and Edgar Lotero, Appl. Catal. A: General, 295, 97 (2005)
  20. K.-W. Lee, B. X. Mei, Q. Bo, Y.-W. Kim, K.-W. Chung, and Y. Han, J. Ind. Eng. Chem., 13, 530 (2007)
  21. B. Freedman, W. F. Kwolek, and E. H. Pryde, J. Am. Oil Chem. Soc., 63, 1370 (1986) https://doi.org/10.1007/BF02673768
  22. D. Kusdiana and S. Saka, Fuel, 80, 693 (2001) https://doi.org/10.1016/S0016-2361(00)00066-1
  23. M. W. Formo, J. Am. Oil Chem. Soc., 31, 548 (1954)
  24. A. Isigigur, F. Karaosmanoglu, and H. A. Aksoy, Appl. Biochem. Biotechnol., 45/46, 103 (1994)
  25. M. D. Serio, M. Ledda. M. Cozzolino, G. Minutillo, R. Tesser, and E. Santacesaria, Ind. Eng. Chem. Res., 45, 3009 (2006)
  26. C. Reddy, V. Reddy, R. Oshel, and J. G. Verkade, Energy Fuels, 20, 1310 (2006)
  27. E. Can, S. Ksefolu, and R. P. Wool, J. Appl. Polym. Sci., 83, 972 (2002)
  28. F. Ma, L. D. Clements, and M. A. Hanna, Ind. Eng. Chem. Res., 37, 3768 (1998) https://doi.org/10.1021/ie9704814
  29. S.-W. Park, J.-W. Lee, B.-S. Choi, and J.-W. Lee, J. Ind. Eng. Chem., 11, 202 (2005)