Design of an Endoscope Objective Lens with a High Numerical Aperture and a Minimally-Invasive Outer Diameter

Rim, Cheon-Seog;Kim, Phil-Han;Yun, Seok-Hyun

  • Published : 20070700

Abstract

Graded-index (GRIN) objective lenses are very simple in construction and easily secure a proper overall length to diagnose some defects beneath the skin for medical treatment. However, graded-index objective lenses have a limitation of numerical aperture (NA) that directly relates to the optical resolution. These lenses work well under a NA of 0.25, at best, which is free from spherical aberration. We present an endoscope objective lens composed of graded-index lenses with an adaptor that can correct the spherical aberration of GRIN rods with a high numerical aperture of 0.5 and a minimally-invasive outer diameter of 1 mm. That is, by attaching a simple adaptor on the GRIN rods, the endoscope objective lens has an optically diffraction-limited performance for 0.5 NA, which makes the manufacture easier and less expensive.

Keywords

References

  1. W. Denk, J. H. Strickler and W. W. Webb, Science 248, 73 (1990) https://doi.org/10.1126/science.248.4958.990
  2. F. Helmchen and W. Denk, Nat. Methods 2, 932 (2005) https://doi.org/10.1038/nmeth818
  3. C. Halin, J. R. Mora, C. Sumen and U. H. von Andrian, Annual Review of Cell and Developmental Biology 21, 581 (2005) https://doi.org/10.1146/annurev.cellbio.21.122303.133159
  4. M. J. Miller, S. H. Wei, I. Parker and M. D. Cahalan, Science 296, 1869 (2002)
  5. R. Kiesslich, Gastroenterology 127, 706 (2004) https://doi.org/10.1053/j.gastro.2004.06.050
  6. C. MacAulay, P. Lane and R. Richards-Kortum, Gastrointest Endosc. Clin. N. Am. 14, 595 (2004) https://doi.org/10.1016/j.giec.2004.03.014
  7. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt and T. Possner, Optics Communications 188, 267 (2001) https://doi.org/10.1016/S0030-4018(00)01146-9
  8. A. Peled, Science 283, 845 (1999)
  9. H. Oshima, A. Rochat, C. Kedzia, K. Kobayashi and Y. Barrandon, Cell 104, 233 (2001) https://doi.org/10.1016/S0092-8674(01)00185-4
  10. N. J. P. Beasley, Cancer Research 62, 1315 (2002)
  11. M. G. Achen, B. K. McColl and S. A. Stacker, Cancer Cell 7, 121 (2005) https://doi.org/10.1016/j.ccr.2005.01.017
  12. T. R. Mempel, S. E. Henrickson and U. H. von Andrian, Nature 427, 154 (2004) https://doi.org/10.1038/nature02238
  13. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski and M. J. Schnitzer, Journal of Neurophysiology 92, 3121 (2004) https://doi.org/10.1152/jn.00234.2004
  14. G. J. Randolph, V. Angeli and M. A. Swartz, Nature Reviews Immunology 5, 617 (2005) https://doi.org/10.1038/nri1670
  15. C. Liang, K. B. Sung, R. R. Richards-Kortum and M. R. Descour, Appl. Opt. 41, 4603 (2002)
  16. K. Carlson, M. Chidley, K. B. Sung, M. Descour, A. Gillenwater, M. Follen and R. Richards-Kortum, Appl. Opt. 44, 1792 (2005) https://doi.org/10.1364/AO.44.001792
  17. M. J. Schnitzer, U. S. Patent 6,643,071 (2003)
  18. H. Miyano, U. S. Patent 7,027,231 (2006)
  19. B. A. Flusberg, J. C. Lung, E. D. Cocker, E. P. Anderson and M. J. Schnitzer, Opt. Lett. 30, 2272 (2005) https://doi.org/10.1364/OL.30.002272
  20. J. C. Jung and M. J. Schnitzer, Opt. Lett. 28, 902 (2003) https://doi.org/10.1364/OL.28.000902
  21. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy and W. W. Webb, J. Neurophysiol. 91, 1908 (2004) https://doi.org/10.1152/jn.01007.2003
  22. B. Messerschmidt, T. Possner and R. Goering, Appl. Opt. 34, 7825 (1995)
  23. W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, New York, 2000)
  24. C. S. Rim, J. Korean Phys. Soc. 46, 448 (2005)
  25. G.-I. Kweon, K. T. Kim, Y.-H. Choi, G.-H. Kim and S.-C. Yang, J. Korean Phys. Soc. 48, 554 (2006)
  26. C. J. R. Sheppard and T. Wilson, Opt. Lett. 3, 115 (1978)
  27. NSG America, Inc., Somerset, N. J., http://www.nsgamerica.com
  28. GRINTECH, Inc., Frankfurt, Germany, http://www.grintech.de
  29. Thorlabs, Inc., Newton, N. J., http://www.thorlabs.com