DOI QR코드

DOI QR Code

Electrochemical cell current requirements for toxic organic waste destruction in Ce(IV)-mediated electrochemical oxidation process

  • Kokovkin, Vasily V. (Department of Chemical Engineering, Sunchon National University) ;
  • Chung, Sang-Joon (Department of Chemical Engineering, Sunchon National University) ;
  • Balaji, Subramanian (Department of Chemical Engineering, Sunchon National University) ;
  • Matheswaran, Manickam (Department of Chemical Engineering, Sunchon National University) ;
  • Moon, Il-Shik (Department of Chemical Engineering, Sunchon National University)
  • Published : 2007.09.01

Abstract

The electrochemical cell for cerium oxidation and reactor for organic destruction are the most important operation units for the successful working mediated electrochemical oxidation (MEO) process. In this study, electrochemical cells with DSA electrodes of two types, single stack and double stack connected in series, were used. The performances towards the electrochemical generation of Ce(IV) in nitric acid media at 80 ℃ were studied. The current-voltage curves and cerium electrolysis kinetics showed the dependence on number of cell stacks needed to be connected in series for the destruction of a given quantity of organic pollutant. The presence of an optimum region for Ce(III) oxidation with a contribution of oxygen evolution, especially at low Ce(III) concentration (high conversion ratios), was found. The cells were applied for the Ce(IV) regeneration during the organic destruction. The cell and reactor processes were fitted in a simple model proposed and used to calculate the current needed in terms of Ce(III) oxidation rate and the number of cell stacks required for maintaining Ce(IV)/Ce(III) ratio at the same level during the organic destruction. This consideration was based on the kinetic model previously developed by us for the organic destruction in the MEO process.

Keywords

References

  1. GEF, On review of emerging innovative technologies for the destruction and decontamination of POPs and the identification ofpromising technologies for use in developing countries, Report of the United Nations Environmental Programme for 2004, January 15 (2004)
  2. J. Bringmann, K. Ebert, U. Galla and H. Schmieder, J Appl. Electrochem., 25,846 (1995)
  3. J. C. Farmer, Environmental oriented electrochemistry, Elsevier Science Publishers, Amsterdam (1992)
  4. J. C. Farmer, F. T. Wang, R A. Hawley-Fedder, P. R. Lewis, L. J. Summers and L. Foiles, J Electrochem. Soc., 139, 654 (1992)
  5. P. M. Dhooge, D. E. Stilwell and S. M. Park, J Electrochem. Soc., 129,1719 (1982)
  6. K. Kramer, P. M. Robertson and N. Ibl, J Appl. Electrochem., 10, 29 (1980)
  7. N. J. Nelson, Handbook of mixed waste management technology, CRC Publishing, Boca Raton, FL (2001)
  8. D. F. Steele, Platinum Met. Rev., 34, 10 (1990)
  9. D. F. Steele, D. Richardson, D. R Craig, J. D. Quinn and P. Page, Electrochemistry for a cleaner environment, The Electrosynthesis company, East Amherst, NY (1992)
  10. T. Tzedakis and A. Savall, Chem. Eng. Sci., 46, 2269 (1991)
  11. J. Varela, S. Oberg, T. M. Neustedter and N. Nelson, Environ. Prog., 20,261 (2001) https://doi.org/10.1002/ep.670200109
  12. K. Juttner, U. Galla and H. Schmieder, Electrochim. Acta, 45, 2575 (2000)
  13. S. J. Chung, S. Balaji, M. Matheswaran, T. Ramesh and I. S. Moon, Water Sci. Technol., 55, 261 (2007)
  14. M. Matheswaran, S. Balaji, S. J. Chung and I. S. Moon, J Ind. Eng. Chem., 13, 231 (2007)
  15. Y. H. Chung and S. M. Park,J Appl. Electrochem., 30, 685 (2000)
  16. Z. Chiba, Mediated electrochemical oxidation of mixed wastes, Lawrence Livermore National Laboratory, Livermore, CA, UCRLJC-112669, April (1993)
  17. Y Wei, B. Fang, T. Arai and M. Kumagai, J Appl. Electrochem., 35, 561 (2005)
  18. T. Raju and C. Ahmed Basha, Chem. Eng. J, 114, 55 (2005)
  19. N. Nelson, Platinum Met. Rev., 46, 18 (2002)
  20. R. M. Spotnitz, R. P. Kreh, J. T. Lundquist and P. J. Press, J Appl. Electrochem., 20, 209 (1990)
  21. T. A. Sedneva, Russian J Appl. Chem., 78, 907 (2005)
  22. I. S. Moon, Korea Patent 10-2005-0045983 (2005)
  23. S. Balaji, S. J. Chung, T. Ramesh and I. S. Moon, Chem. Eng. J, 126, 51 (2007)
  24. S. Balaji, V. V. Kokovkin, S. J. Chung and I. S. Moon, Water Res., 41, 1423 (2007)
  25. J. W. Lee, S. J. Chung, S. Balaji, V. V. Kokovkin and I. S. Moon, Chemosphere, 68, 1067 (2007)
  26. J. Gardiner, Water Res., 10, 507 (1976)
  27. J. L. Means, D. A. Crerar and J. O. Duguid, Science, 200, 1477 (1978)
  28. J. Cleveland and T. Rees, Science, 212, 1506 (1981)
  29. A.C. Alder, H. Siegrist, W Gujier and W Giger, Water Res., 24, 733 (1990)
  30. T. R. Ralph, M. L. Hitchman, J. P. Millington and F. C. Walsh, Electrochim. Acta, 41, 591 (1996)
  31. M. Matheswaran, S. Balaii, S. J. Chung and I. S. Moon, Chemosphere, 69,325 (2007)