Competitive Ability and Possibility of Increased Weediness of Transgenic Rice Tolerant to Abiotic Stresses

환경스트레스 내성 형질전환 벼의 경합력과 잡초화 가능성

Park, Kee-Woong;Kim, Chang-Gi;Kim, Dae-In;Yi , Hoon-Bok;Lee, Bum-Kyu;Kim, Hwan-Mook
박기웅;김창기;김대인;이훈복;이범규;김환묵

  • Published : 2007.12.30

Abstract

A new trait of transgenic plants may alter competitive ability and consequently increase the possibility of weediness of the plants. This study was conducted to determine competitiveness of abiotic stress tolerant transgenic rice (Oryza sativa L.) expressing trehalose-6-phosphate synthase/ phosphatase (TPSP) fusion gene of E. coli. Competition between TPSP rice and its non-transgenic parental variety, Nakdong rice, was evaluated under greenhouse conditions using a set of replacement series experiments with five ratios and four plant densities. The plant biomass per pot of the TPSP and Nakdong rice was similar and corresponded to the theoretical response of two plants having equal competitiveness. Except the plant height, ANOVA for individual plant biomass, flag leaf area, and seed yield showed no ratio effect in the mixtures indicating no competition between TPSP and Nakdong rice. The competition study conducted under different nitrogen supply also showed no difference in the competitive ability between TPSP and Nakdong rice. We also could identify that TPSP and Nakdong rice seeds did not overwinter under the field condition. These results suggest that the trait producing trehalose is not associated with competitive ability in rice. So, the chance of weediness and invasiveness of TPSP rice is unlikely to be greater than those of Nakdong rice.

형질전환에 의하여 새로 도입된 형질은 그 식물의 경합력에 영향을 미칠 수 있으며 결과적으로 잡초화 가능성을 증가시킬 수 있다. 본 실험은 trehalose-6- phosphate synthase/phosphatase(TPSP) 유전자를 발현하는 환경스트레스 내성 벼의 경합력을 알아보고자 수행되었다. 네 개의 서로 다른 밀도에서 수행된 replacement series 경합실험에서 TPSP벼와 낙동벼의 상대적인 경합력에는 차이가 없는 것으로 나타났다. 이러한 결과는 다른 질소 공급 조건에서 이루어진 경합실험에서와 마찬가지였다. 또한 야외 논 포장 조건에서 TPSP벼와 낙동벼 종자는 월동성이 없는 것으로 조사되었다. 이러한 결과들로 볼 때 trehalose를 발현하는 형질이 벼의 경합력과 연관되어 있지 않으며 따라서 TPSP벼의 잡초화나 침입가능성이 모본인 낙동벼보다 크지 않을 것으로 판단된다.

Keywords

References

  1. 바이오안전성백서. 2007. 한국생명공학연구원 바이오안전성정보센터,대전. pp. 206-216
  2. 우희종,임선형,이기종,원소윤,김태산,조현석,진용문. 2006. 국내 유전자 변형 작물의 개발 현황. 한국제농지 18:221-229
  3. Bray, E. A. 1997. Plant responses to water deficit. Trends Plant Sci. 2:48-54 https://doi.org/10.1016/S1360-1385(97)82562-9
  4. Garg, A. K., J. Kim, T. G. Owens, A. P. Ranwala, Y. D. Choi, L. V. Kochian and R. J. Wu. 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. PNAS 99:15898-15903 https://doi.org/10.1073/pnas.252637799
  5. Harper, J. L. 1977. Population Biology of Plants. Academic Press, London, pp. 259-261
  6. James, C. 2006. Global Status of Commercialized Biotech/GM Crops : 2006. ISAAA Brief No. 35. ISAAA : Ithaca, NY
  7. Jang, I., S. Oh., J. Seo., W. Choi., S. Song., C. Kim., Y. S. Kim., H. Seo., Y. D. Choi., B. H. Nahm and J. Kim. 2003. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol. 131:516-524 https://doi.org/10.1104/pp.007237
  8. Oh, S., S. I. Song., Y. S. Kim., H. Jang., S. Y. Kim., M. Kim., Y. Kim., B. H. Nahm and J. Kim. 2005. Arabidopsis CBF3/DREBIA and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138:341-351 https://doi.org/10.1104/pp.104.059147
  9. Penna, S. 2003. Building stress tolerance through overproducing trehalose in transgenic rice. Trends Plant Sci. 8:355-357 https://doi.org/10.1016/S1360-1385(03)00159-6
  10. Radosevich, S. R., J. S. Holt and C. Ghersa. 1997. Weed Ecology, Implications for management. 2nd ed. New York : J. Wiley, pp. 163-216
  11. Rong, J., B. Lu, Z. Song., J. Su., A. A. Snow., X. Zhang., S. Sun., R. Chen and F. Wang. 2007. Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. New Phytol. 173:346-353 https://doi.org/10.1111/j.1469-8137.2006.01906.x
  12. Shinozaki, K., and K. Yamaguchi-Shinozaki. 2000. Gene expression and signal transduction in water-stress response. Curr. Opin. Plant Biol. 3:217-223 https://doi.org/10.1016/S1369-5266(00)00067-4
  13. Snow, A. A., and P. Moran-Palma. 1997. Commercialization of transgenic plants : potential ecological risks. BioScience. 47:86-96 https://doi.org/10.2307/1313019
  14. Thomashow, M. F. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 50:571-599 https://doi.org/10.1146/annurev.arplant.50.1.571
  15. Wang, F., Q. Wang., S. Kwon., S. Kwak and W. Suo 2005. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J. Plant Physiol. 162:465-472 https://doi.org/10.1016/j.jplph.2004.09.009
  16. Zhang, N., S. Linscombe and J. Oard. 2003. Outcrossing frequency and genetic analysis of hybrids between transgenic glufosinate herbicide-resistant rice and the weed, red rice. Euphytica. 130: 35-45 https://doi.org/10.1023/A:1022371104679