Coptidis rhizoma extract protects against cytokine-induced death of pancreatic $\beta$-cells through suppression of NF-$\kappa$B activation

Kim, Eun-Kyung;Kwon, Kang-Beom;Han, Mi-Jeong;Song, Mi-Young;Lee, Ji-Hyun;Lv, Na;Ka, Sun-O;Yeom, Seung-Ryong;Kwon, Young-Dal;Ryu, Do-Gon;Kim, Kang-San;Park, Jin-Woo;Park, Rae-Kil;Park, Byung-Hyun

  • Published : 20070400

Abstract

We demonstrated previously that Coptidis rhizoma extract (CRE) prevented S-nitroso-N-acetylpeni-cillamine-induced apoptotic cell death via the in-hibition of mitochondrial membrane potential dis-ruption and cytochrome c re lease in RINm5F (RIN) rat insulinoma cells. In this study, the preventive effects of CRE against cytokine-induced β-cell death was assessed. Cytokines generated by immune cells infiltrating pancreatic islets are crucial mediators of β-cell destruction in insulin-dependent diabetes mellitus. The treatment of RIN cells with IL-1β and IFN-γ resulted in a reduction of cell viability. CRE completely protected IL-1β and IFN-γ-mediated cell death in a concentration-dependent manner. Incu-bation with CRE induced a significant suppression of IL-1β and IFN-γ-induced nitric oxide (NO) production, a finding which correlated well with reduced levels of the iNOS mRNA and protein. The molecular mecha-nism by which CRE inhibited iNOS gene expression appeared to involve the inhibition of NF-κB activa-tion. The IL-1β and IFN-γ-stimulated RIN cells showed increases in NF-κB binding activity and p65 subunit levels in nucleus, and I κBα degradation in cytosol compared to unstimulated cells. Furthermore, the protective effects of CRE were verified via the observation of reduced NO generation and iNOS expression, and normal insulin-secretion res-ponses to glucose in IL-1 β and IFN-γ-treated islets.

Keywords

References

  1. Amoah-Apraku B, Chandler LJ, Harrison JK, Tang SS, Ingelfinger JR, Guzman NJ. NF- $\kappa$B and transcriptional control of renal epithelial-inducible nitric oxide synthase. Kidney Int 1995;48:674-82 https://doi.org/10.1038/ki.1995.337
  2. Baeuerle PA, Henkel T. Function and activation of NF-$\kappa$B in the immune system. Annu Rev Immunol 1994;12:141-79 https://doi.org/10.1146/annurev.iy.12.040194.001041
  3. Baldwin AS Jr. The NF-$\kappa$B and I$\kappa$B proteins: new discoveries and insights. Annu Rev Immunol 1996;14:649-83 https://doi.org/10.1146/annurev.immunol.14.1.649
  4. Benhamou PY, Moriscot C, Richard MJ, Beatrix O, Badet L, Pattou F, Kerr-Conte J, Chroboczek J, Lemarchand P, Halimi S. Adenovirus-mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets. Diabetologia 1998;41:1093-100 https://doi.org/10.1007/s001250051035
  5. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Cetkovic-Cvrlje M, Eizirik DL. TNF-$\alpha$ and IFN-$\gamma$ potentiate the deleterious effects of IL-1$\beta$ on mouse pancreatic islets mainly via generation of nitric oxide. Cytokine 1994;6:399-406 https://doi.org/10.1016/1043-4666(94)90064-7
  7. Chan CP, But PP, Ho JW. Induction of rcl, a novel growthrelated gene by Coptidis rhizoma in rat H4IIE cells. Life Sci 2002;70:1691-9 https://doi.org/10.1016/S0024-3205(01)01547-8
  8. Chang I, Kim S, Kim JY, Cho N, Kim YH, Kim HS, Lee MK, Kim KW, Lee MS. Nuclear factor $\kappa$B protects pancreatic B-cells from tumor necrosis factor- $\alpha$-mediated apoptosis. Diabetes 2003;52:1169-75 https://doi.org/10.2337/diabetes.52.5.1169
  9. Corbett JA, Wang JL, Sweetland MA, Lancaster JR Jr, McDaniel ML. Interleukin 1$\beta$ induces the formation of nitric oxide by B-cells purified from rodent islets of Langerhans. Evidence for the $\beta$-cell as a source and site of action of nitric oxide. J Clin Invest 1992;90:2384-91 https://doi.org/10.1172/JCI116129
  10. Corbett JA, McDaniel ML. Intraislet release of interleukin 1 inhibits B-cell function by inducing cell expression of inducible nitric oxide synthase. J Exp Med 1995;181:559-68 https://doi.org/10.1084/jem.181.2.559
  11. Cunningham JM, Green IC. Cytokines, nitric oxide and insulin secreting cells. Growth Regul 1994;4:173-80
  12. Darville MI, Eizirik DL. Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. Diabetologia 1998;41:1101-8 https://doi.org/10.1007/s001250051036
  13. Darville MI, Eizirik DL. Cytokine induction of Fas gene expression in insulin-producing cells requires the transcription factors NF-$\kappa$B and C/EBP. Diabetes 2001;50:1741-8 https://doi.org/10.2337/diabetes.50.8.1741
  14. Eizirik DL, Flodstrom M, Karlsen AE, Welsh N. The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. Diabetologia 1996;39:875-90
  15. Eldor R, Yeffet A, Baum K, Doviner V, Amar D, Ben-Neriah Y, Christofori G, Peled A, Carel JC, Boitard C, Klein T, Serup P, Eizirik DL, Melloul D. Conditional and specific NF-$\kappa$B blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci USA 2006;103:5072-7 https://doi.org/10.1073/pnas.0508166103
  16. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002;23:599-622 https://doi.org/10.1210/er.2001-0039
  17. Ferran C, Millan MT, Csizmadia V, Cooper JT, Brostjan C, Bach FH, Winkler H. Inhibition of NF-$\kappa$B by pyrrolidine dithiocarbamate blocks endothelial cell activation. Biochem Biophys Res Commun 1995;214:212-23 https://doi.org/10.1006/bbrc.1995.2277
  18. Flodstrom M, Welsh N, Eizirik DL. Cytokines activate the nuclear factor $\kappa$B (NF-$\kappa$B) and induce nitric oxide production in human pancreatic islets. FEBS Lett 1996;385:4-6 https://doi.org/10.1016/0014-5793(96)00337-7
  19. Flodstrom M, Eizirik DL. Interferon-$\gamma$-induced interferon regulatory factor-1 (IRF-1) expression in rodent and human islet cells precedes nitric oxide production. Endocrinology 1997;138:2747-53 https://doi.org/10.1210/en.138.7.2747
  20. Giannoukakis N, Rudert WA, Trucco M, Robbins PD. Protection of human islets from the effects of interleukin-1$\beta$ by adenoviral gene transfer of an I$\kappa$B repressor. J Biol Chem 2000;275:36509-13 https://doi.org/10.1074/jbc.M005943200
  21. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and $^15N$ nitrate in biological fluids. Anal Biochem 1982;126:131-8 https://doi.org/10.1016/0003-2697(82)90118-X
  22. Heimberg H, Heremans Y, Jobin C, Leemans R, Cardozo AK, Darville M, Eizirik DL. Inhibition of cytokine-induced NF-$\kappa$B activation by adenovirus-mediated expression of a NF-$\kappa$B super-repressor prevents $\beta$-cell apoptosis. Diabetes 2001;50: 2219-24 https://doi.org/10.2337/diabetes.50.10.2219
  23. Heitmeier MR, Scarim AL, Corbett JA. Interferon-$\gamma$ increases the sensitivity of islets of Langerhans for inducible nitric-oxide synthase expression induced by interleukin 1. J Biol Chem 1997;272:13697-704 https://doi.org/10.1074/jbc.272.21.13697
  24. Ho E, Bray TM. Antioxidants, NF-$\kappa$B activation, and diabetogenesis. Proc Soc Exp Biol Med 1999;222:205-13
  25. Ho E, Chen G, Bray TM. Supplementation of N-acetylcysteine inhibits NF-B activation and protects against alloxan-induced diabetes in CD-1 mice. Faseb J 1999;13:1845-54 https://doi.org/10.1096/fasebj.13.13.1845
  26. Hohmeier HE, Thigpen A, Tran VV, Davis R, Newgard CB. Stable expression of manganese superoxide dismutase (MnSOD) in insulinoma cells prevents IL-1$\beta$-duced cytotoxicity and reduces nitric oxide production. J Clin Invest 1998;101:1811-20 https://doi.org/10.1172/JCI1489
  27. Iizuka N, Miyamoto K, Hazama S, Yoshino S, Yoshimura K, Okita K, Fukumoto T, Yamamoto S, Tangoku A, Oka M. Anticachectic effects of Coptidis rhizoma, an anti-inflammatory herb, on esophageal cancer cells that produce interleukin 6. Cancer Lett 2000a;158:35-41 https://doi.org/10.1016/S0304-3835(00)00496-1
  28. Iizuka N, Miyamoto K, Okita K, Tangoku A, Hayashi H, Yosino S, Abe T, Morioka T, Hazama S, Oka M. Inhibitory effect of Coptidis Rhizoma and berberine on the proliferation of human esophageal cancer cell lines. Cancer Lett 2000b;148:19-25 https://doi.org/10.1016/S0304-3835(99)00264-5
  29. Iizuka N, Hazama S, Yoshimura K, Yoshino S, Tangoku A, Miyamoto K, Okita K, Oka M. Anticachectic effects of the natural herb Coptidis rhizoma and berberine on mice bearing colon 26/clone 20 adenocarcinoma. Int J Cancer 2002;99: 286-91 https://doi.org/10.1002/ijc.10338
  30. Jorns A, Gunther A, Hedrich HJ, Wedekind D, Tiedge M, Lenzen S. Immune cell infiltration, cytokine expression, and $\beta$-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm-iddm rat. Diabetes 2005;54:2041-52 https://doi.org/10.2337/diabetes.54.7.2041
  31. Kanazawa Y, Komeda K, Sato S, Mori S, Akanuma K, Takaku F. Non-obese-diabetic mice: immune mechanisms of pancreatic $\beta$-cell destruction. Diabetologia 1984;27 Suppl:113-5 https://doi.org/10.1007/BF00275663
  32. Karin M, Lin A. NF-$\kappa$B at the crossroads of life and death. Nat Immunol 2002;3:221-7 https://doi.org/10.1038/ni0302-221
  33. Kim EK, Kwon KB, Lee JH, Park BH, Park JW, Lee HG, Jhee EC, Yang JY. Inhibition of cytokine-mediated nitric oxide synthase expression in rat insulinoma cells by scoparone. Biol Pharm Bull 2007;30:242-6 https://doi.org/10.1248/bpb.30.242
  34. Kim HR, Rho HW, Park BH, Park JW, Kim JS, Kim UH, Chung MY. Role of $Ca^2+$ in alloxan-induced pancreatic $\beta$-cell damage. Biochim Biophys Acta 1994;1227:87-91 https://doi.org/10.1016/0925-4439(94)90111-2
  35. Kim SK, Kim JH, Kim BS, Chung HY, Lee YY, Park CS, Lee YS, Lee YH, Chung IY. Identification and functional characterization of an alternative spice variant within the fourth exon of human nanog. Exp Mol Med 2005;37:601-7 https://doi.org/10.1038/emm.2005.73
  36. Kubisch HM, Wang J, Bray TM, Phillips JP. Targeted overexpression of Cu/Zn superoxide dismutase protects pancreatic $\beta$-cells against oxidative stress. Diabetes 1997;46: 1563-6 https://doi.org/10.2337/diabetes.46.10.1563
  37. Kwon G, Corbett JA, Rodi CP, Sullivan P, McDaniel ML. Interleukin-1$\beta$-induced nitric oxide synthase expression by rat pancreatic $\beta$-cells: evidence for the involvement of nuclear factor $\kappa$B in the signaling mechanism. Endocrinology 1995; 136:4790-5 https://doi.org/10.1210/en.136.11.4790
  38. Kwon G, Corbett JA, Hauser S, Hill JR, Turk J, McDaniel ML. Evidence for involvement of the proteasome complex (26S) and NF$\kappa$B in IL-1B-induced nitric oxide and prostaglandin production by rat islets and RINm5F cells. Diabetes 1998;47:583-91 https://doi.org/10.2337/diabetes.47.4.583
  39. Kwon KB, Kim JH, Lee YR, Lee HY, Jeong YJ, Rho HW, Ryu DG, Park JW, Park BH. Amomum xanthoides extract prevents cytokine-induced cell death of RINm5F cells through the inhibition of nitric oxide formation. Life Sci 2003a;73:181-91 https://doi.org/10.1016/S0024-3205(03)00267-4
  40. Kwon KB, Ryu DG, Shin MK, Shin BC, Hwang WJ, Lee YR, Park JW, Park BH. Fructus Benincasae Recens extract prevents cytokine-induced nitric oxide formation and cytotoxicity of RINm5F cells. Immunopharmacol Immunotoxicol 2003b;25:615-25 https://doi.org/10.1081/IPH-120026445
  41. Kwon KB, Kim EK, Lim JG, Shin BC, Han SC, Song BK, Kim KS, Seo EA, Ryu DG. Protective effect of Coptidis Rhizoma on S-nitroso-N-acetylpenicillamine (SNAP)-induced apoptosis and necrosis in pancreatic RINm5F cells. Life Sci 2005; 76:917-29 https://doi.org/10.1016/j.lfs.2004.10.008
  42. Kwon KB, Kim EK, Jeong ES, Lee YH, Lee YR, Park JW, Ryu DG, Park BH. Cortex cinnamomi extract prevents streptozotocin- and cytokine-induced $\beta$-cell damage by inhibiting NF-$\kappa$B. World J Gastroenterol 2006;12:4331-7 https://doi.org/10.3748/wjg.v12.i27.4331
  43. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006;55:2256-64 https://doi.org/10.2337/db06-0006
  44. Leng SH, Lu FE, Xu LJ. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol Sin 2004;25:496-502
  45. Liuwantara D, Elliot M, Smith MW, Yam AO, Walters SN, Marino E, McShea A, Grey ST. Nuclear factor-$\kappa$B regulates $\beta$-cell death: a critical role for A20 in beta-cell protection. Diabetes 2006;55:2491-501 https://doi.org/10.2337/db06-0142
  46. Lortz S, Tiedge M, Nachtwey T, Karlsen AE, Nerup J, Lenzen S. Protection of insulin-producing RINm5F cells against cytokine-mediated toxicity through overexpression of antioxidant enzymes. Diabetes 2000;49:1123-30 https://doi.org/10.2337/diabetes.49.7.1123
  47. Mandrup-Poulsen T. The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia 1996;39:1005-29 https://doi.org/10.1007/BF00400649
  48. May MJ, Ghosh S. Signal transduction through NF-$\kappa$B. Immunol Today 1998;19:80-8 https://doi.org/10.1016/S0167-5699(97)01197-3
  49. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43:109-42
  50. Nossal GJ, Herold KC, Goodnow CC. Autoimmune tolerance and type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1992;35 Suppl 2:S49-59 https://doi.org/10.1007/BF00586279
  51. Park BH, Rho HW, Park JW, Cho CG, Kim JS, Chung HT, Kim HR. Protective mechanism of glucose against alloxaninduced pancreatic $\beta$-cell damage. Biochem Biophys Res Commun 1995;210:1-6 https://doi.org/10.1006/bbrc.1995.1619
  52. Park BH, Park JW. The protective effect of Amomum xanthoides extract against alloxan-induced diabetes through the suppression of NF-$\kappa$B activation. Exp Mol Med 2001;33: 64-8 https://doi.org/10.1038/emm.2001.12
  53. Rabinovitch A, Suarez-Pinzon WL. Cytokines and their roles in pancreatic islet B-cell destruction and insulin-dependent diabetes mellitus. Biochem Pharmacol 1998;55:1139-49 https://doi.org/10.1016/S0006-2952(97)00492-9
  54. Scarim AL, Heitmeier MR, Corbett JA. Heat shock inhibits cytokine-induced nitric oxide synthase expression by rat and human islets. Endocrinology 1998;139:5050-7 https://doi.org/10.1210/en.139.12.5050
  55. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-$\kappa$B transcription factor and HIV-1. Embo J 1991;10:2247-58
  56. Sorli CH, Zhang HJ, Armstrong MB, Rajotte RV, Maclouf J, Robertson RP. Basal expression of cyclooxygenase-2 and nuclear factor-interleukin 6 are dominant and coordinately regulated by interleukin 1 in the pancreatic islet. Proc Natl Acad Sci USA 1998;95:1788-93 https://doi.org/10.1073/pnas.95.4.1788
  57. Southern C, Schulster D, Green IC. Inhibition of insulin secretion by interleukin-1B and tumour necrosis factor-$\alpha$ via an L-arginine-dependent nitric oxide generating mechanism. FEBS Lett 1990;276:42-4 https://doi.org/10.1016/0014-5793(90)80502-A
  58. Steinle AU, Weidenbach H, Wagner M, Adler G, Schmid RM. NF-$\kappa$B/Rel activation in cerulein pancreatitis. Gastroenterology 1999;116:420-30 https://doi.org/10.1016/S0016-5085(99)70140-X
  59. Tang LQ, Wei W, Chen LM, Liu S. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J Ethnopharmacol 2006;108:109-15 https://doi.org/10.1016/j.jep.2006.04.019
  60. Vodovotz Y, Bogdan C, Paik J, Xie QW, Nathan C. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor $\beta$. J Exp Med 1993;178:605-13 https://doi.org/10.1084/jem.178.2.605
  61. Welsh N, Eizirik DL, Bendtzen K, Sandler S. Interleukin-1$\beta$-induced nitric oxide production in isolated rat pancreatic islets requires gene transcription and may lead to inhibition of the Krebs cycle enzyme aconitase. Endocrinology 1991;129: 3167-73 https://doi.org/10.1210/endo-129-6-3167
  62. Zhang SU, Park KW, Oh S, Cho HJ, Cho HJ, Park JS, Cho YS, Koo BK, Chae IH, Choi DJ, Kim HS, Lee MM. NF-$\kappa$B decoy potentiates the effects of radiation on vascular smooth muscle cells by enhancing apoptosis. Exp Mol Med 2005;37:18-26 https://doi.org/10.1038/emm.2005.3