A Prediction of Half-Metallicity in a $Co_{2}$-Based Full Heusler Compound with the 4d Transition-Metal Element, $Co_{2}ZrSi$: A First-Principles Study

Jiu, Jin-Ying;Lee, Jae-Il

  • Published : 20070700

Abstract

We calculated the electronic structures of several Co$_2$-based full Heusler compounds with $4d$ transition elements \textit{T} and Si, Co$_2$\textit{T}Si (\textit{T} = Y, Zr and Nb), by using the all electron full potential band method and found that the Co$_2$ZrSi is half-metallic ferromagnet. The calculated atomic resolved density of states (DOSs) for Co$_2$ZrSi showed that it had a considerably large minority spin gap ($0.94\;\text{eV}$) and that the Fermi level was pinned just at the middle of the gap. The fact that the Co$_2$ZrSi had an integer value for the magnetic moment, $2.000\;\mu_{\text{B}}$ per formula unit (f.u.), also indicated that this compound was half-metallic. Calculations for the compounds Co$_2$YSi and Co$_2$NbSi showed that they were not half-metals, but ferromagneic metals with magnetic moments of $1.002$ and $2.243\;\mu_{\text{B}}$/f.u., respectively. The Fermi level of Co$_2$YSi, located at the left edge of the minority spin gap, made the material nearly half-metallic while that of Co$_2$NbSi was positioned just below a large peak of minority Co $3d$ states.

Keywords

References

  1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, Science 294, 1488 (2001)
  2. J. KÄubler, A. R. Williams and C. B. Sommers, Phys. Rev. B 28, 1745 (1983)
  3. R. J. Kim, Y. J. Yoo, K. K. Yu, T.-U. Nahm, Y. P. Lee, Y. V. Kudryavtsev, V. A. Oksenenko, J. Y. Rhee and K. W. Kim, J. Korean Phys. Soc. 49, 996 (2006)
  4. Y. P. Lee, R. J. Kim, Y. J. Yoo, K. W. Kim and Y. V. Kudryavtsev, J. Korean Phys. Soc. 49, 2080 (2006)
  5. M. P. Raphael, B. Ravel, Q. Huang, M. A. Willard, S. F. Cheng, B. N. Das, R. M. Stroud, K. M. Bussmann, J. H. Claassen and V. G. Harris, Phys. Rev. B 66, 104429 (2002)
  6. S. F. Cheng, B. Nadgorny, K. Bussmann, E. F. Carpen-ter, B. N. Das, G. Trotter, M. P. Raphael and V. G. Harris, IEEE Trans. Magnetics 37, 2176 (2001)
  7. S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Kseno-fontov, C. Felser, H. J. Lin and J. Morais, Phys. Rev. B 72, 184434 (2005) https://doi.org/10.1103/PhysRevB.72.184434
  8. X. Q. Chen, R. Podloucky and P. Rogl, J. Appl. Phys. 100, 113901 (2006) https://doi.org/10.1063/1.2374672
  9. I. Galanakis, Ph. Mavropoulos and P. H. Dederichs, J. Phys. D: Appl. Phys. 39, 765 (2006) https://doi.org/10.1088/0022-3727/39/5/S01
  10. S. C. Lee, T. D. Lee, P. Blaha and K. Schwarz, J. Appl. Phys. 97, 10C307 (2005) https://doi.org/10.1063/1.1853899
  11. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
  12. E. Wimmer, H. Krakauer, M. Weinert and A. J. Free-man, Phys. Rev. B 24, 864 (1981) and references therein
  13. M. Weinert, E. Wimmer and A. J. Freeman, Phys. Rev. B 26, 4571 (1982)
  14. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) https://doi.org/10.1103/PhysRevLett.77.996
  15. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 78, 1396(E) (1997)
  16. D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977)
  17. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996) p. 78
  18. A. U. B. Wolter, A. Bosse, D. Baabe, I. Maksimov, D. Mienert, H. H. Klauss, F. J. Litterst, D. Niemeier, R. Michalak, C. Geibel, R. Feyerherm, R. Hendrikx, J. A. Mydosh and S. Sullow, Phys. Rev. B 66, 174428 (2002)