Study on the Silicate Dispersion and Rheological Properties of PP/Starch-MB/Silicate Composites

Kim, Youn-Cheol;Kim, Jin-Chul

  • Published : 20071100

Abstract

Polypropylene (PP)/corn starch master batch (MB)/modified montmorillonite (silicate) composites with different silicate compositions of 1, 3, 5, and 7 wt% were prepared by melt compounding at 200℃, using lab scale Brabender mixer. The thermal properties and silicate dispersion of the PP/MB/silicate composites were investigated by differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), X-ray diffraction (XRD), and transmission electron microscope (TEM). TGA curve indicated an increase in degradation temperature with the silicate amount. The dispersion of the silicate in PP/starch-MB matrix depended on the silicate composition. There was no remarkable change in silicate dispersion of the composite when maleic anhydride modified PP (MAH) was added. The rheological properties of the composites indicated increase in complex viscosity, shear thinning tendency, and viscous property with the silicate amount. These effects were confirmed by an oscillatory viscometer at 200℃.

Keywords

References

  1. D. L. Lim and S. S. Im, J. Korean Ind. & Eng. Chem., 3, 361 (1992)
  2. Y. G. Kim, Y. H. Park, and S. S, Im, J. Korean Ind. & Eng. Chem., 4, 178 (1993)
  3. Y. Yoo and D. K. Kim, Polymer (Korea), 18, 602 (1994)
  4. S. H. Lee, D. J. Kim, J. H. Kim, D. H. Lee, S. J. Sim, J. D. Nam, H. S. Kye, and Y. K. Lee, Polymer (Korea), 28, 519 (2004)
  5. J. H. Sung, D. P. Park, B. J. Park, and H. J. Choi, J. Ind. Eng. Chem., 12, 301 (2006)
  6. M. S. Chung, W. H. Lee, Y. S. You, H. Y. Kim, K. M. Park, and S. Y. Lee, Food Sci. Biotech., 15, 5 (2006)
  7. M. Barikani and M. Mohammadi, Carbohydrate Polymers, 68, 773 (2007)
  8. W. Y. Jang, B. Y. Shin, T. J. Lee, and R. Narayan, J. Ind. Eng. Chem., 13, 457 (2007)
  9. J. Heinemann, P. Reichert, R. Thomann, R. Mulhaupt, Macro. Rapid Commun., 20, 423 (1999)
  10. L. Zheng, R. J. Farris, and E. B. Coughlin, Macromolecules, 34, 8034 (2001) https://doi.org/10.1021/ma002404h
  11. P. H. Nam, P. Maiti, M. Okamoto, T. Kotaka, N. Hasegawa, and A. Usuki, Polymer, 42, 9633 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  12. X. Liu and Q. Wu, Polymer, 42, 10013 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  13. P. Svoboda, C. Zeng, H. Wang, J. Lee, and D. L. Tomasko, J. Appl. Polym. Sci., 85, 1562 (2002)
  14. A. Bafna, G. Beaucage, F. Mirabella, and S. Mehta, Polymer, 44, 1103 (2003) https://doi.org/10.1016/S0032-3861(03)00699-2
  15. J. Li, C. Zhou, and W. Gang, Polym. Test., 22, 217 (2003) https://doi.org/10.1016/S0142-9418(02)00024-7
  16. J. H. Kim, J. M. Koo, Y. S. Choi, K. H. Wang, and I. J. Chung, Polymer, 45, 7719 (2004)
  17. Y. C. Kim, Polym. J., 38, 250 (2006)
  18. K. H. Wang, M. H. Choi, C. K. Koo, Y. S. Choi, and I. J. Chung, Polymer, 42, 9819 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  19. A. Lele, M. Mackley, G. Galgali, and C. Ramesh, J. Rheol., 46, 1091 (2002)
  20. Y. C. Kim, S. J. Lee, J. C. Kim, and H. Cho, Polym J., 37, 206 (2005)
  21. Y. Kurokawa, H. Yasuda, and A. Oya, J. Mater. Sci., 35, 1045 (2000)
  22. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada, J. Appl. Polym. Sci., 67, 87 (1998)
  23. X. Liu and Q. Wu, Polymer, 42, 10013 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  24. J. Li, C. Zhou, and W. Gang, Polym. Test., 22, 217 (2003) https://doi.org/10.1016/S0142-9418(02)00024-7
  25. M. Sikka, L. N. Cerini, S. S. Ghosh, and K. I. Winey, J. Polym. Sci., Part B: Polym. Phys., 34, 1443 (1996)
  26. R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 8000 (1997)
  27. F. N. Cogswell, J. Non-Newtonian Fluid Mech., 2, 37 (1977)
  28. C. Venet and B. Vergnes, J. Rheol., 41, 873 (1997)
  29. S. Q. Wange and P. A. Drda, Macromolecules, 29, 2627 (1997)
  30. H. B. Kim, C. H. Lee, J. S. Choi, B. J. Park, S. T. Lim, and H. J. Choi, J. Ind. Eng. Chem., 11, 769 (2005) https://doi.org/10.1021/ie50109a005