Cohnella panacarvi sp. nov., a Xylanolytic Bacterium Isolated from Ginseng Cultivating Soil

  • Yoon, Min-Ho (Department of BioEnvironmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Ten, Leonid N. (Department of Biology & Medicinal Sciences, Pai Chai University) ;
  • Im, Wan-Taek (Department of Biological Sciences, Korea Advnaced Institute of Science and Technology)
  • Published : 2007.06.30

Abstract

A Gram-positive, aerobic, rod-shaped, nonmotile, endospore-forming bacterium, designated Gsoil $349^T$, was isolated from soil of a ginseng field and characterized using a polyphasic approach. Comparative analysis of 16S rRNA gene sequences revealed that the strain Gsoil $349^T$ belongs to the family Paenibacillaceae, and the sequence showed closest similarity with Cohnella thermotolerans DSM $17683^T$ (94.1%) and Cohnella hongkongensis DSM $17642^T$ (93.6%). The strain showed less than 91.3% 16S rRNA gene sequence similarity with Paenibacillus species. In addition, the presence of MK-7 as the major menaquinone and $anteiso-C_{15:0},\;iso-C_{16:0},\;and\;C_{16:0}$ as major fatty acids suggested its affiliation to the genus Cohnella. The G+C content of the genomic DNA was 53.4 mol%. On the basis of its phenotypic characteristics and phylogenetic distinctiveness, strain Gsoil $349^T$ should be treated as a novel species within the genus Cohnella for which the name Cohnella panacarvi sp. nov. is proposed. The type strain is Gsoil $349^T\;(=KCTC\;13060^T=\;DSM\;18696^T)$.

Keywords

References

  1. Ash, C., J. A. E. Farrow, S. Wallbanks, and M. D. Collins. 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett. Appl. Microbiol. 13: 202-206 https://doi.org/10.1111/j.1472-765X.1991.tb00608.x
  2. Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64: 253-260 https://doi.org/10.1007/BF00873085
  3. Atlas, R. M. 1993. In L. C. Parks (ed.). Handbook of Microbiological Media. CRC Press, Boca Raton, Florida
  4. Buck, J. D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44: 992-993
  5. Cappuccino, J. G. and N. Sherman. 2002. Microbiology: A Laboratory Manual, 6th Ed. Benjamin Cummings, San Francisco
  6. Cheong, H., S.-Y. Park, C.-M. Ryu, J. F. Kim, S.-H. Park, and C. S. Park. 2005. Diversity of root-associated Paenibacillus spp. in winter crops from the southern part of Korea. J. Microbiol. Biotechnol. 15: 1286-1298
  7. Euzeby, J. P. 2006. List of bacterial names with standing in nomenclature. http://www.bacterio.cict.fr/
  8. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791 https://doi.org/10.2307/2408678
  9. Fitch, W. M. 1972. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20: 406-416 https://doi.org/10.2307/2412116
  10. Hall, M. G. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucl. Acids Symp. Ser. 41: 95-98
  11. Kampfer, P. 2002. Whole-cell fatty acid analysis in the systematics of Bacillus and related genera, pp. 271-299. In R. Berkeley, M. Heyndrickx, N. Logan, and P. De Vos (eds.), Applications and Systematics of Bacillus and Relatives. Blackwell Science, Oxford
  12. Kampfer, P., R. Rossello-Mora, E. Falsen, H.-J. Busse, and B. J. Tindall. 2006. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int. J. Syst. Evol. Microbiol. 56: 781-786 https://doi.org/10.1099/ijs.0.63985-0
  13. Keswani, J. and W. B. Whitman. 2001. Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int. J. Syst. Evol. Microbiol. 51: 667-678 https://doi.org/10.1099/00207713-51-2-667
  14. Kim, M. K., W.-T. Im, H. Ohta, M. Lee, and S.-T. Lee. 2005. Sphingopyxis granuli sp. nov., a ${\beta}-glucosidase$ producing bacterium in the family Sphingomonadaceae in ${\alpha}-4$ subclass of the Proteobacteria. J. Microbiol. 43: 152-157
  15. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge
  16. Kouker, G. and K.-E Jaeger. 1987. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53: 211-213
  17. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment briefings. Bioinformatics 5: 150-163 https://doi.org/10.1186/1471-2105-5-150
  18. Mesbah, M., U. Premachandran, and W. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167 https://doi.org/10.1099/00207713-39-2-159
  19. Moore, D. D. 1995. Preparation and analysis of DNA, pp. 2-11. In F. W. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (eds.), Current Protocols in Molecular Biology. Wiley, New York, U.S.A
  20. Ryu, C.-M., J. Kim, O. Choi, S.-Y. Park, S.-H. Park, and C.-S. Park. 2005. Nature of root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15: 984-991
  21. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  22. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI, U.S.A
  23. Shin, Y. K., J.-S. Lee, C. O. Chun, H.-J. Kim, and Y.-H. Park. 1996. Isoprenoid quinone profiles of the Leclercia adecarboxylata KTCT $1036^T$. J. Microbiol. Biotechnol. 6: 68-69
  24. Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849 https://doi.org/10.1099/00207713-44-4-846
  25. Ten, L. N., W.-T. Im, M.-K. Kim, M.-S. Kang, and S.-T. Lee. 2004. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J. Microbiol. Meth. 56: 375-382 https://doi.org/10.1016/j.mimet.2003.11.008
  26. Ten, L. N., S.-H. Baek, W.-T. Im, M. Lee, H. W. Oh, and S.-T. Lee. 2006. Paenibacillus panacisoli sp. nov., a xylanolytic bacterium isolated from soil in a ginseng field in South Korea. Int. J. Syst. Evol. Microbiol. 56: 2677-2681 https://doi.org/10.1099/ijs.0.64405-0
  27. Teng, J. L. L., P. C. Y. Woo, K. W. Leung, S. K. Lau, M. K. Wong, and K. Y. Yuen. 2003. Pseudobacteraemia in a patient with neutropenic fever caused by a novel Paenibacillus species: Paenibacillus hongkongensis sp. nov. Mol. Pathol. 56: 29-35 https://doi.org/10.1136/mp.56.1.29
  28. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. Higgins. 1997. The Clustal_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882
  29. Wayne, L. G., D. J. Brenner, R. R. Colwell, et al. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464 https://doi.org/10.1099/00207713-37-4-463