Proteome Analysis of Paenibacillus polymyxa E681 Affected by Barley

  • Published : 2007.06.30

Abstract

Paenibacillus polymyxa E681 is known to be able to suppress plant diseases by producing antimicrobial compounds and to promote plant growth by producing phytohormones, and secreting diverse degrading enzymes. In spite of these capabilities, little is known regarding the flow of information from the bacterial strain to the barley roots. In an attempt to determine the flow of information from the bacterial strain to barley roots, the strain was grown in the presence and absence of barley, and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and MALDI-TOF mass spectrometry were used. 2D-PAGE detected approximately 1,000 spots in the cell and 1,100 spots in the supernatant at a pH 4-10 gradient. Interestingly, about 80 spots from each sample showed quantitative variations. Fifty-three spots from these were analyzed by MALDI-TOF mass spectrometry and 28 proteins were identified. Most of the cytosolic proteins expressed at higher levels were found in P. polymyxa E681 cells grown in the presence of barley rather than in the absence of barley. Proteins detected at a lower level in the surpernatant of P. polymyxa E68l cells grown in the presence of barley were lipoprotein, glucose-6-phosphate 1-dehydrogenase, heat-shock protein HtpG, spermidine synthase, OrfZ, ribonuclease PH, and coenzyme PQQ synthesis protein, and flagellar hook-associated protein 2 whereas proteins detected at a higher level in the surpernatant of P. polymyxa E681 cells grown in the presence of barley included D-alanyl-D-alanine ligase A, isopentenyl-diphosphate delta-isomerase, ABC transporter ATP-binding protein Uup, lipase. Many of the proteins belonging to plant-induced stimulons are associated with biosynthetic metabolism and metabolites of proteins and transport. Some of these proteins would be expected to be induced by environmental changes resulting from the accumulation of plant-secreted substances.

Keywords

References

  1. Ash, C., F. G. Priest, and M. D. Collins, 1993. Molecular identification of rRNA group 3 bacilli using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leewenhoek 64: 253-260 https://doi.org/10.1007/BF00873085
  2. Belimov, A. A., V. I. Safronova, T. A. Sergeyeva, T. N. Egorova, V. A. Matveyeva, V. E. Tsyganov, A. Y. Borisov, I. A. Tikhonovich, C. Kluge, A. Preisfeld, K. J. Dietz, and V. V. Stepanok. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 47: 642-652 https://doi.org/10.1139/cjm-47-7-642
  3. Boddey, R. M., L. G. da Silva, V. M. Reis, B. J. R. Alves, and S. Urquiaga. 1999. Assessment of bacterial nitrogen fixation in grass species, pp. 705-726. In E. W. Triplett (ed.), Nitrogen Fixation in Bacteria: Molecular and Cellular Biology. Horizon Scientific Press, U.K
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72: 248- 254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Briat, J.-F. 1992. Iron assimilation and storage in prokaryotes. J. Gen. Microbiol. 138: 2475-2483 https://doi.org/10.1099/00221287-138-12-2475
  6. Buettner, K., J. Bernhardt, C. Scharf, R. Schmid, U. Maeder, C. Eymann, H. Antelmann, A. Voelker, U. Voelker, and M. Hecker. 2001. A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 22: 2908-2935 https://doi.org/10.1002/1522-2683(200108)22:14<2908::AID-ELPS2908>3.0.CO;2-M
  7. Glick, B. R., C. L. Patten, G. Holguin, and D. M. Penrose. 1999. Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press, London
  8. Gophna, U. and E. Z. Ron. 2002. Virulence and the heat shock response. Int. J. Med. Microbiol. 292: 1-9 https://doi.org/10.1078/1438-4221-00184
  9. Gouzou, L., G. Burtin, R. Philippy, F. Bartoli, and T. Heulin. 1993. Effect of inoculation with Bacillus polymyxa on soil aggregation in the wheat rhizosphere: Preliminary examination. Geoderma 56: 479-491 https://doi.org/10.1016/0016-7061(93)90128-8
  10. Holl, F. B., C. P. Chanway, R. Turkington, and R. A. Radley. 1988. Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne) and white clover (Triifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol. Biochem. 20: 19-24 https://doi.org/10.1016/0038-0717(88)90121-6
  11. Jang, M., B. C. Park, D. H. Lee, C. W. Kho, S. E. Cho, B. R. Lee, and S. G. Park. 2006. Proteome analysis of Bacillus subtilis when overproducing secretory protein. J. Microbiol. Biotechnol. 16: 368-373
  12. James, E. K. 2000. Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res. 65: 197-209 https://doi.org/10.1016/S0378-4290(99)00087-8
  13. Jeong, H. Y., J. H. F. Kim, Y. K. Park, S. B. Kim, C. H. Kim, and S. H. Park. 2006. Genome snapshot of Paenibacillus polymyxa ATCC $842^T$. J. Microbiol. Biotechnol. 16: 1650- 1655
  14. Kajimura, Y. and M. Kaneda. 1996. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT- 8: Taxonomy, fermentation, isolation, structure elucidation and biological activity. J. Antibiot. 49: 129-135 https://doi.org/10.7164/antibiotics.49.129
  15. Katiyar, V. and R. Goel. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
  16. Klee, H. J., M. B. Hayford, K. A. Kretzmer, G. F. Barry, and G. M. Kishore. 1991. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3: 1187-1193 https://doi.org/10.1105/tpc.3.11.1187
  17. Kloepper, J. W., R. M. Zablotowicz, E. M. Tipping, and R. Lifshitz. 1991. pp. 315-326. In K. L. Keister and P. B. Cregan (eds.). The Rhizosphere and Plant Growth. Kluwer. Academic Publishers, Dordecht, U.S.A
  18. Kloepper, J. W. 1992. Plant growth-promoting rhizobacteria as biological control agents, pp. 255-274. In F. B. Metting Jr. (ed.). Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker Inc., NY, U.S.A
  19. Kurusu, K. and K. Ohba. 1987. New peptide antibiotics LIF03, F04, F05, F07, and F08, produced by Bacillus polymyxa. I. Isolation and characterization. J. Antibiot. 40: 1506-1514 https://doi.org/10.7164/antibiotics.40.1506
  20. Leong, J. 1986. Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24: 187-209 https://doi.org/10.1146/annurev.py.24.090186.001155
  21. Lim, H. S., J. M. Lee, and S. D. Kim. 2002. A plant growthpromoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J. Microbiol. Biotechnol. 12: 249-257
  22. Neilands, J. B. and S. A. Leong. 1986. Siderophores in relation to plant growth and disease. Annu. Rev. Plant Physiol. 37: 187-208 https://doi.org/10.1146/annurev.pp.37.060186.001155
  23. Oakley, B. R., D. R. Kirsch, and N. R. Morris. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105: 361-363 https://doi.org/10.1016/0003-2697(80)90470-4
  24. O'Farrell, P. H. 1975. High-resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007- 4021
  25. Park, S.-H., J. F. Kim, C. C. Kim, H. Jeong, S.-K. Choi, C.-G. Hur, T. K. Oh, Y. H. Moon, and C. S. Park. 2002. Genome sequencing and analysis of Paenibacillus polymyxa E681, a plant-probiotic bacterium. 9th International Symposium on the Genetics of Industrial Microorganisms. S18: 68
  26. Pichard, B., J. P. Larue, and D. Thouvenot. 1995. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol. Lett. 133: 215-218 https://doi.org/10.1111/j.1574-6968.1995.tb07887.x
  27. Richardson, A. E. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust. J. Plant Physiol. 28: 897-906
  28. Rodriguez, H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339 https://doi.org/10.1016/S0734-9750(99)00014-2
  29. Rosado, A. S. and L. Seldin. 1993. Production of a potentially novel antimicrobial substance by Bacillus polymyxa. World J. Microbiol. Biotechnol. 9: 521-528 https://doi.org/10.1007/BF00386287
  30. Ryu, C. M. and C. S. Park. 1997. Enhancement of plant growth induced by endospore forming PGPR strain, Bacillus polymyxa E681, pp. 209-211. In: Plant Growth-promoting Rhizobacteria: Present Status and Future Prospects. Proceedings of the 4th International Workshop on Plant Growth-promoting Rhizobacteria, Japan-OECD joint workshop, Sapporo
  31. Ryu, C. M., J. W. Kim, O. H. Choi, S. Y. Park, S. H. Park, and C. S. Park. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15: 984-991
  32. Sattar, M. A. and A. C. Gaur. 1987. Production of auxins and gibberellins by phosphate-dissolving microorganisms. Zentralbl. Mikrobiol. 142: 393-395
  33. Sauer, K., A. K. Camper, G. D. Ehrlich, J. W. Costerton, and D. G. Davies. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140-1154 https://doi.org/10.1128/jb.184.4.1140-1154.2002
  34. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68: 850-858 https://doi.org/10.1021/ac950914h
  35. Storm, D. R., K. S. Rosenthal, and P. E. Swanson. 1977. Polymyxin and related peptide antibiotics. Annu. Rev. Biochem. 46: 723-763 https://doi.org/10.1146/annurev.bi.46.070177.003451
  36. Timmusk, S., B. Nicander, U. Granhall, and E. Tillberg. 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 31: 1847-1852 https://doi.org/10.1016/S0038-0717(99)00113-3
  37. Whiteley, M., M. G. Bangera, R. E. Bumgarner, M. R. Parsek, G. M. Teitzel, S. Lory, and E. P. Greenberg. 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413: 860-864 https://doi.org/10.1038/35101627