DOI QR코드

DOI QR Code

Groundwater Recharge Estimation for the Gyeongan-cheon Watershed with MIKE SHE Modeling System

MIKE SHE 모형을 이용한 경안천 유역의 지하수 함양량 산정

  • 김철겸 (한국건설기술연구원 수자원연구부) ;
  • 김현준 (한국건설기술연구원 수자원연구부) ;
  • 장철희 (한국건설기술연구원 수자원연구부) ;
  • 임상준 (서울대학교 산림과학부)
  • Published : 2007.06.30

Abstract

To estimate the groundwater recharge, the fully distributed parameter based model, MIKE SHE was applied to the Gyeongan-cheon watershed which is one of the tributaries of Han River Basin, and covers approximately $260km^2$ with about 49 km main stream length. To set up the model, spatial data such as topography, land use, soil, and meteorological data were compiled, and grid size of 200m was applied considering computer ability and reliability of the results. The model was calibrated and validated using a split sample procedure against 4-year daily stream flows at the outlet of the watershed. Statistical criteria for the calibration and validation results indicated a good agreement between the simulated and observed stream flows. The annual recharges calculated from the model were compared with the values from the conventional groundwater recession curve method, and the simulated groundwater levels were compared with the observed values. As a result, it was concluded that the model could reasonably simulate the groundwater level and recharge, and could be a useful tool for estimating spatially/temporally the groundwater recharges, and enhancing the analysis of the watershed water cycle.

본 연구에서는 대상유역인 경안천 유역 (유역면적 $260km^2$)에 대한 지하수 함양량 추정을 위해, 완전 분포형 모형인 MIKE SHE를 적용하였다. 모형 입력자료로서 DEM 토지이용도, 정밀토양도 등과 같은 GIS 자료를 구축하고, 기상자료를 이용하여 증발산 입력자료를 생성하였다. 유역 최종 출구점인 경안 수위표 지점에서의 유출자료를 활용하여 모형 보정과 검증을 수행한 결과, 관측치의 경향을 잘 모의하는 것으로 나타났으며, 유역내 운영되고 있는 마평 지하수위 관측소의 관측지하수위와 모의치를 비교한 결과도 매우 양호하게 나타났다. 모형을 이용하여 대상유역에 대한 연간 지하수 함양량을 산정하고, 기존의 감수곡선법에 의해 계산된 값과 비교한 결과 비슷한 모의값을 보였다. 결론적으로 모형을 통한 지하수위 모의 및 함양량 모의에 신뢰성이 높게 나타났으며, 함양량의 시공간적인 분포 특성 파악에 유의하게 활용될 수 있을 것으로 생각된다.

Keywords

References

  1. 건설교통부 (1999). 지표수-지하수 연계운영 시스템 개발, '98 건설기술연구개발 최종보고서 R&D/98-0005
  2. 건설교통부.한국수자원공사 (2002). 우리가람 길라잡이
  3. 경기도 (2001). 경안천수계하천정비기본계획, 수원
  4. 김남원, 정일문, 원유승 (2004). '완전 연동형 SWAT-MODFLOW 결합모형 :(I) 모형의 개발' 한국수자원학회 논문집, 한국수자원학회, 제37권, 제6호, pp. 499-507
  5. 김남원, 정일문, 원유승 (2005). '시공간적 변동성을 고려한 지하수 함양량의 추정 방안.' 한국수자원학회 논문집, 한국수자원학회, 제38권, 제7호, pp. 517-526 https://doi.org/10.3741/JKWRA.2005.38.7.517
  6. 김성준 (2001). '분포형 수문 .수질 모델링의 최근 동향과 활용방안.' 한국수자원학회지, 한국수자원학회, 제36권,6호, pp. 33-45
  7. 김지훈 (1998), 지리정보시스템을 이용한 SWAT/GRASS 모형의 적용. 석사학위논문, 서울대학교
  8. 한국건설기술연구원 (2003). 건강한 물순환체계 구축을 위한 유역진단기법 개발연구, 건기연 2003-060
  9. Abbot, M.B., Bathurst, J.C., Cunge, J.A., O'Connell, P.E., and Rasmussen J. (1986). 'An introduction to the European Hydrological System - Systeme Hydrologique Europeen, SHE : 1. History and philosophy of a physically-based distributed modeling system.' Journal of Hydrology, 87, pp. 45-59 https://doi.org/10.1016/0022-1694(86)90114-9
  10. Averjanov, S.E. (1950). 'About permeability of subsurface soils in case of incomplete saturation. In English Collection, Vol. 7. As quoted by P. Ya Palubarinova, 1962.' The Theory of ground water movement (English translation by I.M Roger DeWiest. Princeton University Press, Princeton, NJ), pp. 19-21
  11. DHl (1999). MIKE SHE Water Movement: User manual. Denmark: H$\phi$rsholm, Danish Hydraulic Institute
  12. Feyen, L., Vazquez, R., Christianens, K, Sels, O., and Feyen J. (2000). 'Application of a distributed physically-based hydrological model to a medium size catchment.' Hydrology and Earth System Sciences, Vol. 4, No.1, pp. 47-63 https://doi.org/10.5194/hess-4-47-2000
  13. Freeze, R.A., and Cherry, J.A. (1979). Grounduater. Prentice Hall
  14. Kristensen, K.J., and Jensen, S.E. (1975). 'A model for estimating actual evapotranspiration from potential evapotranspiration.' Nordic Hydro., 6, pp. 170-188 https://doi.org/10.2166/nh.1975.0012
  15. Lal, A.M.W., Belnap, M., and Van Zee R. (1998). 'Simulation of Overland and Groundwater Flow in the Everglades National Park.' Proceedings of the International Water Resources Engineering Conference in Memphis, Tennessee, Volume One, American Society of Civil Engineers, pp. 610-615
  16. Maidment, D.R. (1992). Handbook of Hydrology. McGraw-Hill, Inc., pp. 26.2-26.3
  17. McCuen, R.H. (2003). Modeling hydrologic chanae : Statistical methods. Boca Raton, Fla., Lewis Publishers
  18. McDonald, M.G., and Harbaugh, A.W. (1988). 'A Modular Three-Dimensional Finite-Difference Ground-water Flow Model.' U.S. Geological Survey Techniques of Water Resources Investigations Report Book 6, Chapter A1, 528p
  19. Refsgaard, J.C., and Storm, B. (1995). In: Singh, V.P., (Ed.), 'Computer Models of Watershed Hydrology.' Water Resources Publications, Englewood, USA, pp. 800-846
  20. Rutter, A.J., Kershaw, K.A., Robins, P.C., and Morton, A.J. (1971). 'A predictive model of rainfall interception in forests. I. Derivation of the model from observations in a plantation of corsican pine.' Agric. Meteorol., 9, pp. 267-384
  21. SDI Environmental Service, Inc. (1997). 'Water Resource Evaluation and Integrated Hydrologic Model of the Central Northern Tampa Bay Region.' Final Report ISGW/CNTB Model SDE Project No. WCF-690, Prepared for West Coast Regional Water Supply Authority, Clearwater Florida
  22. Sophocleous, M.S., Perkins, S.P., Stadnyk, N.G., and Kaushal, R.S. (1997). Lower Republican Stream-Aquifer Project. Final Report, Kansas Geological Survey Open File Report 97-8, 1930 Constant Avenue, University of Kansas, Lawrence, KS 66047-3726
  23. van Genuchten, M .T. (1980). 'A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.' Soil Science Society of America Journal, 44, pp. 892-898 https://doi.org/10.2136/sssaj1980.03615995004400050002x
  24. Walton, R., Martin, Jr., T.H., Chapman, R.S., and Davis, J.E. (1995). Investigation of Wetlands Hydraulic and Hydrological Processes, Model Development, and Application. Wetlands Research Program Technical Report WRP-CP-6 prepared for US Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS

Cited by

  1. Comparison of Groundwater Recharge between HELP Model and SWAT Model vol.43, pp.4, 2010, https://doi.org/10.3741/JKWRA.2010.43.4.383