Repeated Batch Production of Epothilone B by Immobilized Sorangium cellulosum

  • Park, Sang-Woo (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Park, Su-Jeong (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Han, Se-Jong (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Dong-Shik (Department of Chemical and Environmental Engineering, University of Toledo) ;
  • Kim, Ji-Heung (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Byung-Woo (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lee, Jee-Won (Department of Chemical & Biological Engineering, Korea University) ;
  • Sim, Sang-Jun (Department of Chemical Engineering, Sungkyunkwan University)
  • Published : 2007.07.31

Abstract

Production of extracellular epothilone B, one of the potent anticancer agents, by free and immobilized Sorangium cellulosum was studied using the repeated batch culture process. The concentration of alginate used in immobilization was directly related to the mass transfer rate of nutrients, mechanical stability, and the epothilone B production yield. With the optimized 3% (w/v) calcium alginate carrier, a prolonged repeated batch culture was investigated for the 5 repeated batches for 24 days. The maximum productivity of epothilone B obtained from the alginate-immobilized cells was 5.03 mg/l/day, which is 3 times higher than that of free cells (1.68 mg/l/day).

Keywords

References

  1. Bollag, D. M., P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides, and C. M. Woods. 1995. Epothilones, a new class of microtubulestabilizing agents with a taxol-like mechanism of action. Cancer Res. 55: 2325-2333
  2. Choi, K. O., S. H. Song, Y. H. Kim, D. H. Park, and Y. J. Yoo. 2006. Bioelectrochemical denitrification using permeabilized Ochrobactrum anthropi SY509. J. Microbiol. Biotechnol. 16: 678-682
  3. Chou, T. C., X. G. Zhang, A. Balog, D. S. Su, D. Meng, K. Savin, J. R. Bertino, and S. J. Danishefsky. 1998. Desoxyepothilone B: An efficacious microtubule-targeted antitumor agent with a promising in vivo profile relative to epothilone B. Proc. Natl. Acad. Sci. USA 95: 9642-9647
  4. Fenice, M., F. Federici, L. Selbmann, and M. Petruccioli. 2000. Repeated-batch production of pigments by immobilised Monascus purpureus. J. Biotechnol. 80: 271-276 https://doi.org/10.1016/S0168-1656(00)00271-6
  5. Fenice, M., R. D. Giambattista, E. Raetz, J. L. Leuba, and F. Federici. 1988. Repeated-batch and continuous production of chitinolytic enzymes by Penicillium janthinellum immobilised on chemically-modified macroporous cellulose. J. Biotechnol. 62: 119-131 https://doi.org/10.1016/S0168-1656(98)00051-0
  6. Garbayo, J., C. Vilchez, J. M. Vega, J. E. Nava-Saucedo, and J. N. Barbotin. 2004. Influence of immobilization parameters on growth and lactic acid production by Streptococcus thermophilus and Lactobacillus bulgaricus co-immobilized in calcium alginate gel beads. Biotechnol. Lett. 26: 1825-1827 https://doi.org/10.1007/s10529-004-5134-3
  7. Gerth, K., H. Steinmetz, G. Hafle, and H. Reichenbach. 2001. Studies on the biosynthesis of epothilones: The PKS and epothilone C/D monooxygenase. J. Antibiot. 54: 144-148 https://doi.org/10.7164/antibiotics.54.144
  8. Gerth, K., N. Bedorf, G Hafle, H. Irschik, and H. Reichenbach. 1996. Epothilones A and B: Antifungal and cytotoxic compounds from Sorangium cellulosum (myxobacteria) production, physico-chemical, and biological properties. J. Antibiot. 49: 560-563 https://doi.org/10.7164/antibiotics.49.560
  9. Hamedi, J., F. Khodagholi, and A. Hassani-Nasab. 2005. Increased erythromycin production by alginate as a medium ingredient or immobilization support in culture of Saccharopolyspora erythraea. Biotechnol. Lett. 27: 661-664 https://doi.org/10.1007/s10529-005-4476-9
  10. Hirokawa, T., M. Hata, and H. Taketa. 1982. Correlation between the starch level and the rate of starch synthesis during the development cycle of Chlorella ellipsoidea. Plant Cell Physiol. 23: 813-820
  11. Julien, B. and S. Shah. 2002. Heterologous expression of epothilone biosynthesis genes in Myxococcus xanthus. Antimicrob. Agents Chemother. 46: 2772-2778 https://doi.org/10.1128/AAC.46.9.2772-2778.2002
  12. Kowalski, R. J., P. Giannakakou, and E. Hamel. 1997. Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel. J. Biol. Chem. 272: 2534-2541 https://doi.org/10.1074/jbc.272.4.2534
  13. Lau, J., S. Frykman, R. Regentin, S. Ou, H. Tsuruta, and P. Licari. 2002. Optimizing the heterologous production of epothilone D in Myxococcus xanthus. Biotechnol. Bioeng. 78: 280-288 https://doi.org/10.1002/bit.10202
  14. Lim, J. S., S. W. Park, J. W. Lee, K. K. Oh, and S. W. Kim. 2005. Immobilization of Penicillium citrinum by entrapping cells in calcium alginate for the production of neofructooligosaccharides. J. Microbiol. Biotechnol. 15: 1317-1322
  15. Najatpour, G., H. Younesi, and K. S. K. Ismail. 2004. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresource Technol. 92: 251-260 https://doi.org/10.1016/j.biortech.2003.09.009
  16. Nicolaou, K. C., F. Roschangar, and D. Vourloumis. 1998. Chemical biology of epothilones. Angew. Chem. Int. 37: 2014-2045 https://doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2014::AID-ANIE2014>3.0.CO;2-2
  17. Park, S. W., S. H. Choi, Y. J. Yoon, D. H. Lee, D. J. Kim, J.-H. Kim, Y. K. Lee, G. J. Choi, I.-T. Yeom, and S. J. Sim. 2006. Enhanced production of epothilones by carbon sources in Sorangium cellulosum. J. Microbiol. Biotechnol. 16: 519-523
  18. Regentin, R., S. Frykman, J. Lau, and H. Tsuruta. 2003. Nutrient regulation of epothilone biosynthesis in heterologous and native production strains. Appl. Microbiol. Biotechnol. 61: 451-455 https://doi.org/10.1007/s00253-003-1263-1
  19. Sakamoto, K., K. Honda, K. Wada, S. Kita, K. Tsuzaki, H. Nose, M. Kataka, and S. Shimizu. 2005. Practical resolution system for DL-pantoyl lactone using the lactonase from Fusarium oxysporum. J. Biotechnol. 118: 99-106 https://doi.org/10.1016/j.jbiotec.2005.03.015
  20. Tang, L., S. Shah, L. Chung, J. Carney, L. Katz, C. Khosla, and B. Julien. 2000. Cloning and heterologous expression of the epothilone gene cluster. Science 287: 640-642 https://doi.org/10.1126/science.287.5453.640
  21. Yu, X., Y. Li, C. Wang, and D. Wu. 2004. Immobilization of Aspergillus niger tannase by microencapsulation and its kinetic characteristics. Biotechnol. Appl. Biochem. 40: 151-155 https://doi.org/10.1042/BA20030180