The Essential Oil of Artemisia iwayomogi Kitamura Induces Apoptosis on Human Oral Epidermoid Carcinoma Cells

  • Jeong, Mi-Ran (Research Center of Bioactive Materials, Chonbuk National University) ;
  • Cha, Jeong-Dan (Institute of Oral Bioscience, Department of Oral Microbiology, School of Dentistry, Chonbuk National University) ;
  • Lee, Kyung-Yeol (Institute of Oral Bioscience, Department of Oral Microbiology, School of Dentistry, Chonbuk National University) ;
  • Kil, Bong-Seop (College of Natural Science, Wonkwang University) ;
  • Han, Jong-Hyun (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Lee, Young-Eun (Major in Food and Nutrition, Wonkwang University)
  • Published : 2007.08.31

Abstract

The aerial part of Artemisia iwayomogi Kitamura has traditionally been used for inflammation, infectious disease, cancer, pyretic, diuretic, liver protective effect, and choleretic purposes in Korea. We investigated that the essential oil induces apoptosis in KB cell as evidenced by Hoechst-33258 dye staining, flow cytometry (cell cycles), and DNA fragmentation for nuclear condensation and Western blotting for activation of caspases-3, -8, -9, Bax, Bcl-2, cytochrome c, and poly (ADP-ribose) polymerase (PARP) cleavage. In the present study, we found that the essential oil could induce apoptosis in KB cells, as characterized by DNA fragmentation, activation of caspase-3, -8, and -9, and PARP cleavage. The efficacious induction of apoptosis was observed as a dose-dependent. The essential oil-induced apoptotic cell death was accompanied by up-regulation of Bax and down-regulation of Bcl-2. The essential oil also caused the loss of mitochondrial membrane potential and cytochrome c release from mitochondria to cytosol. These findings indicate that mitochondrial pathways might be involved in the essential oil-induced apoptosis and enhance our understanding of the anticancer function of the essential oil in herbal medicine.

Keywords

References

  1. Park JH. Korean Folk Medicine. Busan National University Publisher, Busan, Korea. p. 68 (1999)
  2. Li H, Madden JL, Potts BM. Variation in volatile leaf oils of the Tasmanian Eucalyptus species. 1. Subgenus Monocalyptus. Biochem. Syst. Ecol. 23: 299-318 (1995) https://doi.org/10.1016/0305-1978(95)97455-6
  3. Tan RX, Zheng WF, Tang HQ. Biologically active substances from the genus Artemisia. Planta Med. 64: 295-302 (1998) https://doi.org/10.1055/s-2006-957438
  4. Garcia CC, Talarico L, Almeida N, Colombres S, Duschatzky C, Damonte EB. Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytother. Res. 17: 1073-1075 (2003) https://doi.org/10.1002/ptr.1305
  5. Huang W, Zhang J, Moore DD. A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR. J. Clin. Invest. 113: 137-143 (2004) https://doi.org/10.1172/JCI200418385
  6. Buhagiar JA, Podesta MT, Wilson AP, Micallef MJ, Ali S. The induction of apoptosis in human melanoma, breast and ovarian cancer cell lines using an essential oil extract from the conifer Tetraclinis articulate. Anticancer Res. 19: 5435-5443 (1999)
  7. Mangena T, Muyima NY. Comparative evaluation of the antimicrobial activities of essential oils of Artemisia afra, Pteronia incana, and Rosmarinus officinalis on selected bacteria and yeast strains. Lett. Appl. Microbiol. 28: 291-296 (1999) https://doi.org/10.1046/j.1365-2672.1999.00525.x
  8. Guardia T, Juarez AO, Guerreiro E, Guzman JA, Pelzer L. Antiinflammatory activity and effect on gastric acid secretion of dehydroleucodine isolated from Artemisia douglasiana. J. Ethnopharmacol. 88: 195-198 (2003) https://doi.org/10.1016/S0378-8741(03)00211-3
  9. Koo KA, Kwak JH, Lee KR, Zee OP, Woo ER, Park HK, Youn HJ. Antitumor and immunomodulating activities of the polysaccharide fractions from Artemisia slengenesis and Artemisia iwayomogi. Arch. Pharm. Res. 17: 371-374 (1994) https://doi.org/10.1007/BF02974179
  10. Bae JM, Kim MS, Park HJ, Chung HY, Young H, Park KY, Moon SH, Choi JS. Antimutagenic principle of Artemisia iwayomogi and its action mechanism. J. Korea Cancer Asso. 24: 352-358 (1992)
  11. Kim SS, Lee CK, Kang SS, Jung HA, Choi JS. Chlorogenic acid an antioxidant principle from the aerial parts of Artemisia iwayomogi that acts on 1,1-diphenyl-2-picrylhydrazyl radical. Arch. Pharm. Res. 20: 148-154 (1997) https://doi.org/10.1007/BF02974002
  12. Yu HH, Kim YH, Kil BS, Kim KJ, Jeong SI, You YO. Chemical composition and antibacterial activity of essential oil of Artemisia iwayomogi. Planta Med. 69: 1159-1162 (2003) https://doi.org/10.1055/s-2003-818011
  13. Lee SB, Cho TS, Yoon KW, Lee JC, Lee SM, Shim SB. Astudy on the hepatoprotective effect of PS-1 from Artemisia iwayomogi. J. Appl. Pharmacol. 6: 119-129 (1998)
  14. Nagata S. Apoptosis by death factor. Cell 88: 355-365 (1997) https://doi.org/10.1016/S0092-8674(00)81874-7
  15. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15: 269-290 (1999) https://doi.org/10.1146/annurev.cellbio.15.1.269
  16. Cohen GM, Sun XM, Snowden RT, Dinsdale D, Skilleter DN. Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem. J. 286: 331-334 (1992) https://doi.org/10.1042/bj2860331
  17. Earnshaw WC. Nuclear changes in apoptosis. Curr. Opin. Cell Biol. 7: 337-343 (1995) https://doi.org/10.1016/0955-0674(95)80088-3
  18. Cohen GW. Caspase: the executioners of apoptosis. Biochem. J. 326: 1-16 (1997) https://doi.org/10.1042/bj3260001
  19. Thornberry NA. The caspase family of cysteine proteases. Brit. Med. Bull. 53: 478-490 (1997) https://doi.org/10.1093/oxfordjournals.bmb.a011625
  20. Adams JM, Cory S. Apoptosomes: engines for caspase activation. Curr. Opin. Cell Biol. 14: 715-720 (2002) https://doi.org/10.1016/S0955-0674(02)00381-2
  21. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68: 383-424 (1999) https://doi.org/10.1146/annurev.biochem.68.1.383
  22. Oliver FJ, de la Rubia G, Rolli V, Ruiz-Ruiz MC, de Murcia G, Murcia JM. Importance of poly (ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J. Biol. Chem. 273: 33533-33539 (1998) https://doi.org/10.1074/jbc.273.50.33533
  23. Green DR, Reed JC. Mitochondria and apoptosis. Science 281: 1309-1312 (1998) https://doi.org/10.1126/science.281.5381.1309
  24. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat. Med. 6: 513-519 (2000) https://doi.org/10.1038/74994
  25. Bernardi P, Azzone GF. Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. J. Biol. Chem. 256: 7187-7192 (1981)
  26. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275: 1129-1132 (1997) https://doi.org/10.1126/science.275.5303.1129
  27. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB. Bcl-x, a Bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597-608 (1993) https://doi.org/10.1016/0092-8674(93)90508-N
  28. Chittenden T, Harrington EA, O'Connor R, Flemington C, Lutz RJ, Evan GI, Guild BC. Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374: 733-736 (1995) https://doi.org/10.1038/374733a0
  29. Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Gene Dev. 13: 1899-1911 (1999) https://doi.org/10.1101/gad.13.15.1899
  30. Boehrer S, Kukoc-Zivojnov N, Nowak D, Bergmann M, Baum C, Puccetti E, Weidmann E, Hoelzer D, Mitrou PS, Chow KU. Upon drug-induced apoptosis expression of prostate-apoptosis-responsegene- 4 promotes cleavage of caspase-8, Bid and mitochondrial release of cytochrome c. Hematology 9: 425-431 (2004) https://doi.org/10.1080/10245330400010604
  31. Gu Q, Wang JD, Xia HH, Lin MC, He H, Zou B, Tu SP, Yang Y, Liu XG, Lam SK, Wong WM, Chan AO, Yuen MF, Kung HF, Wong BC. Activation of the caspase-8/Bid and Bax pathways in aspirin-induced apoptosis in gastric cancer. Carcinogenesis 26: 541- 546 (2005) https://doi.org/10.1093/carcin/bgh345
  32. Antonsson B, Montessuit S, Sanchez B, Martinou JC. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J. Biol. Chem. 276: 11615-11623 (2001) https://doi.org/10.1074/jbc.M010810200
  33. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC. Bax directly induces release of cytochrome c from isolated mitochondria. P. Natl. Acad. Sci. USA 95: 4997-5002 (1998) https://doi.org/10.1073/pnas.95.9.4997
  34. Cha MR, Kim JY, Hwang JH, Park HR. Induction of cytotoxicity and apoptosis in HT-29 human colon carcinoma cells by a Gleditsiae semen extract. Food Sci. Biotechnol. 16: 260-264 (2007)
  35. Schloffer D, Horky M, Kotala V, Wesierska-Gadek J. Induction of cell cycle arrest and apoptosis in human cervix carcinoma cells during therapy by cisplatin. Cancer Detect Prev. 27: 481-493 (2003) https://doi.org/10.1016/j.cdp.2003.07.002
  36. Cha JD, Jeong MR, Lee YE. Induction of apoptosis in human oral epidermoid carcinoma cells by essential oil of Chrysanthemum boreale Makino. Food Sci. Biotechnol. 14: 350-354 (2005)
  37. Lee JM, Kim HJ, Choi HJ, You YH, Hwang KT, Lee MY, Park CS, Jun WJ. Effects of Oenanthe javanica on transcriptional regulation of COX-2 by inhibiting translocation of p65 subunit in LPSstimulated murine peritoneal macrophages. Food Sci. Biotechnol. 15: 975-979 (2006)
  38. Haidara K, Morel I, Abalea V, Gascon Barre M, Denizeau F. Mechanism of tert-butylhydroperoxide induced apoptosis in rat hepatocytes: involvement of mitochondria and endoplasmic reticulum. Biochim. Biophys. Acta 30: 173-185 (2002)
  39. Paik SY, Koh KH, Beak SM, Paek SH, Kim JA. The essential oils from Zanthoxylum schinifolium pericarp induce apoptosis of HepG2 human hepatoma cells through increased production of reactive oxygen species. Biol. Pharm. Bull. 28: 802-807 (2005) https://doi.org/10.1248/bpb.28.802
  40. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9- dependent manner. J. Cell Biol. 144: 281-292 (1999) https://doi.org/10.1083/jcb.144.2.281
  41. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483-487 (1999) https://doi.org/10.1038/20959