Photostabilization and Cure Kinetics of UV-Curable Optical Resins Containing Photostabilizers

  • Cho, Jung-Dae (Institute of Photonics & Surface Treatment, Q-Sys Co., Ltd.) ;
  • Kim, Sung-Hwa (Optical Solution Lab., Central R&D Institute, Samsung Electro-mechanics) ;
  • Chang, In-Cheol (Optical Solution Lab., Central R&D Institute, Samsung Electro-mechanics) ;
  • Kim, Kwon-Seok (Department of Polymer Science & Engineering, Chosun University) ;
  • Hong, Jin-Who (Department of Polymer Science & Engineering, Chosun University)
  • Published : 2007.10.31

Abstract

The photostabilization and cure kinetics of UV-curable, optical resins containing various formulations of photostabilizers were investigated to determine the system with the highest cure conversion and durability. Photo-DSC analysis revealed that increasing the concentration of a UV absorber (UVA) decreased both the crosslink density and the cure rate due to competition for the incident photons between the photoinitiator and the UVA, whereas including a hindered amine light stabilizer (HALS) hardly affected either the cure conversion or the cure rate due to its very low absorption of 365 nm. This result was confirmed by FTIR-ATR spectroscopy and UV-visible spectroscopy analyses. QUV ageing experiments showed that the cure conversion and durability were the highest for the UVA/HALS formulation at a ratio of 1 : 2, which is due to their synergistic action.

Keywords

References

  1. P. K. T. Oldring, Chemistry & Technology of UV & EB Formulation for Coatings Inks & Paints, Vols. 1-4, SITA Technology, London, 1991
  2. A. Reiser, Photoreactive Polymers, Wiley, New York, 1989
  3. C. G. Roffey, Photo polymerization of Sur face Coatings, Wiley, New York, 1982
  4. L. Dellmann, S. Roth, C. Beuret, L. Paratte, G-A. Racine, H. Lorenz, M. Despont, P. Renaud, P. Vettiger, and N. de Rooij, Microsyst. Technol., 4, 147 (1998)
  5. V. Seidemann, S. Butefisch, and S. Biittgenbach, Sens. Actuators A: Phys., 97-98, 457 (2002)
  6. T. Kyu, S. Meng, H. Duran, K. Nanjundiah, and G. R. Yandek, Macromol. Res., 14, 155 (2006) https://doi.org/10.1007/BF03218503
  7. S. H. Nam, J. W. Kang, and J. J. Kim, Macromol. Res., 14, 114 (2006) https://doi.org/10.1007/BF03219077
  8. Y. Hirai, S. Harada, S. Isaka, M. Kobayashi, and Y. Tanaka, Jpn. J. Appl. Phys., 41, 4186 (2002)
  9. D. I. Shin, S. H. Kim, H. S. Jeong, S. C. Lee, Y. S. Jin, J. E. Noh, H. R. Oh, K. U. Lee, D. H. Shin, and S. H. Song, Proceedings of SPIE-IS&T Electronic Imaging, 6068, 60680Q-l (2006)
  10. C. Decker and S. Biry, Prog Org. Coat., 29, 81 (1996) https://doi.org/10.1016/S0300-9440(96)00630-3
  11. C. Decker and K. Zahouily, Polym. Degrad. Stab., 64, 293 (1999)
  12. S. Zeren, Macromol. Symp., 187, 343 (2002)
  13. J. D. Cho, S. G Kim, and J. W. Hong, J. Appl. Polym. Sci., 99, 1446 (2006) https://doi.org/10.1002/app.22631
  14. J. W. Hong and H. K. Kim, Macromol. Res., 14, 617 (2006) https://doi.org/10.1007/BF03218733
  15. S. C. Clark, C. E. Hoyle, S. Jonsson, F. Morel, and C. Decker, Polymer, 40, 5063 (1999)
  16. J. D. Cho, Y. B. Kim, H. T. Ju, and J. W. Hong, Macromol. Res., 13, 362 (2005) https://doi.org/10.1007/BF03218467
  17. J. D. Cho, H. K. Kim, Y. S. Kim, and J. W. Hong, Polym. Test., 22, 633 (2003) https://doi.org/10.1016/S0142-9418(02)00169-1
  18. J. D. Cho, H. T. Ju, and J. W. Hong, J. Polym. Sci.; Part A: Polym. Chem., 43, 658 (2005) https://doi.org/10.1002/pola.20529
  19. J. D. Cho, H. T. Ju, Y. S. Park, and J. W. Hong, Macromol. Mater. Eng, 291, 1155 (2006) https://doi.org/10.1002/mame.200600124