Effects of EBCT and Water Temperature on HAA Removal using BAC Process

BAC 공정에서 EBCT와 수온에 따른 HAA 제거 특성

  • Son, Hee-Jong (Water Quality Institute, Busan Water Authority) ;
  • Yoo, Soo-Jeon (Water Quality Institute, Busan Water Authority) ;
  • Yoo, Pyung-Jong (Water Quality Institute, Busan Water Authority) ;
  • Jung, Chul-Woo (Ulsan Regional Innovation Agency, Ulsan Industry Promotion Techno Park)
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 유수전 (부산광역시 상수도사업본부 수질연구소) ;
  • 유평종 (부산광역시 상수도사업본부 수질연구소) ;
  • 정철우 (울산산업진흥TP 전략산업기획단)
  • Published : 2008.12.31

Abstract

In this study, The effects of three different biological activated carbon (BAC) materials (each coal, coconut and wood based activated carbons), empty bed contact time (EBCT) and water temperature on the removal of haloacetic acid (HAA) 5 species in BAC filters were investigated. Experiments were conducted at three water temperatures (5, 10 and 20$^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BAC, increasing EBCT or increasing water temperature increased the HAA 5 species removal in BAC columns. To achieve an HAA removal efficiency 50% or higher in a BAC filter, the authors suggest 10 min EBCT or longer for 5$^{\circ}C$ waters and 5 min EBCT for waters at 10$^{\circ}C$ or higher. The kinetic analysis suggested a first-order reaction model for HAA 5 species removal at various water temperatures (5, 10 and 20$^{\circ}C$). The pseudo-first-order reaction rate constants and half-lives were also calculated for HAA removal at 5, 10 and 20$^{\circ}C$. The pseudo-first-order reaction rate constants and half-lives were also calculated for HAA 5 species removal at 5$\sim$ 20$^{\circ}C$. The half-lives of HAA 5 species ranging from 0.75 to 18.58 min could be used to assist water utilities in designing and operating BAC filters for HAA removal.

생물활성탄(BAC) 재질별 EBCT 및 수온변화에 따른 HAA 5종의 생물분해 특성을 조사한 결과 다음과 같은 결론을 얻을 수 있었다. 본 연구에서 BAC에서 HAA 제거시 EBCT와 수온이 매우 큰 영향을 미치는 것으로 나타났다. EBCT와 수온을 증가시킬 경우 HAA의 제거율이 상승하였으며, 수온이 20$^{\circ}C$ 보다 높을 경우 HAA의 제거능은 EBCT의 영향을 크게 받지 않는 것으로 나타났다. 하지만 수온이 5$\sim$10$^{\circ}C$ 정도로 낮을 경우는 EBCT의 증가가 HAA의 제거율에 큰 영향을 미치는 것으로 나타났다. 활성탄 재질에 따른 BAC에서의 HAA 제거는 석탄계 재질에서의 생물분해능이 가장 높았고, 다음으로 야자계, 목탄계 순으로 조사되었다. HAA 5종에 대한 생물분해 속도상수와 반감기는 수온이 5$^{\circ}C$일 때의 HAA 5종에 대한 생물분해 속도상수(k)와 반감기(t$_{1/2}$)는 0.0373$\sim$0.1175 min$^{-1}$, 반감기는 5.9$\sim$18.58분이었으며, 수온을 10$^{\circ}C$와 20$^{\circ}C$로 증가시켰을 때 5$^{\circ}C$일 때와 반감기를 비교해 보면 1.5$\sim$7.9배로 감소되었다.

Keywords

References

  1. Yavich, A. A. and Masten, S. J., "Use of ozonation and FBT to control THM precursors," J. AWWA, 95(4), 159-171(2003) https://doi.org/10.1002/j.1551-8833.2003.tb10342.x
  2. Page, D. W., van Leeuwen, J. A., Spark, K. M., Drikas, M, Withers, N., and Mulcahy, D. E., "Effect of alum treatment on the trihalomethane formation and bacterial regrowth potential of natural and synthetic waters," Water Res., 36, 4884-4892(2002) https://doi.org/10.1016/S0043-1354(02)00218-X
  3. Vel Leitner, N. K., De Laat, J., Dore, M., and Suty, H., "The use of $ClO_2$ in drinking water treatment: formation and control of inorganic by-products($ClO_2\/^-$, $ClO_3\/^-$)," Disinfection By-products in Water Treatment: the Chemistry of Their Formation and Control, Minear, R. A. and Amy, G. L(Eds), CRC Press, Boca Raton, pp. 393-407(1996)
  4. Reckhow, D. A., "Control of disinfection by-product formation using ozone," Formation and Control of Disinfection By-Products in Drinking Water, Singer, P. C.(Ed), American Water Works Association, Denver, pp. 179-204(1999)
  5. Tung, H. H., Unz, R. F., and Xie, Y. F., "The effects of adsorption isotherm testing conditions on GAC bed life estimation," Proceedings of 2003 AWWA Annual Conference, June 15-19, Anaheim, California(2003)
  6. Wu, H. and Xie, Y. F., "Effects of empty bed contact time and temperature on the removal of haloacetic acids using biologically activated carbon," Proceedings of 2003 AWWA Annual Conference, June 15-19, Anaheim, California(2003)
  7. Speth, T. F. and Miltner, R. J., "Adsorption capacity of GAC for synthetic organics," J. AWWA, 90(4), 171-174(1998) https://doi.org/10.1002/j.1551-8833.1998.tb08420.x
  8. Singer, P. and Reckhow, D., Chemical Oxidation in Water Quality and Treatment, Letterman, R. D.(Ed.), AWWA, Denver, pp. 12.29-12.46(1999)
  9. Williams, S., Williams, R., and Gordon, A., "The impact of bacterial degradation of haloacetic acids in the distribution system," Proceeding of AWWA WQTC, Boston, (1996)
  10. Xie, Y. and Zhou, H., "Using BAC for HAA removalpart 2: column study," J. AWWA, 94(5), 126-134(2002) https://doi.org/10.1002/j.1551-8833.2002.tb09476.x
  11. US EPA, National Exposure Research Laboratory, Office of Research Development, Method 552.2, Cincinnati, Ohio (1995)
  12. 長澤, "粒狀活性炭表層のおける微生物の動向," 第41回 日本水道硏究發表會 發表論文集, 1-3(1990)
  13. APHA, AWWA, WEF, "Heterotrophic plate count," Standard Methods for the Examination of Water and Wastewater, Eaton, A. D., Clesceri, L. S. and Greenberg, A. E. (Eds), APHA, AWWA, WEF, Washington DC, 19th ED, pp. 9-31-9-35(1995)
  14. Fuhrman, J. A. and Azam, F., "Thymidine incorporation as a measure of heterotrophic bacterio-plankton production in marine surface waters: evaluation and field results," Mar. Biol., 66, 109-120(1982) https://doi.org/10.1007/BF00397184
  15. Parsons, T. R., Maita, Y., and Lalli, C. M., A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon, New York(1984)
  16. Bell, R. T., Ahlgren, G. M., and Ahlgren, I., "Estimating bacterioplankton production by the [$^3H$]thymidine incorporation in a eutrophic Swedish Lake," Appl. Environ. Microbiol., 45, 1709-1721(1983)
  17. 손희종, 박홍기, 이수애, 정은영, 정철우, "생물활성탄 공정에서 활성탄 재질에 따른 부착미생물 군집특성," 대한환경공학회지, 27(12), 1311-1320(2005)
  18. Zhou, H. and Xie, Y., "Using BAC for HAA removalpart 1: batch study," J. AWWA, 94(4), 194-200(2002) https://doi.org/10.1002/j.1551-8833.2002.tb09463.x
  19. 손희종, 노재순, 정철우, 이철우, 강임석, "상수원수중에 함유된 천연유기물질 분자량 크기가 염소 소독부산물 생성에 미치는 영향," 대한환경공학회지, 26(11), 1278-1290 (2004)
  20. Chang, C. Y., Hsieh, U. H., Lin, Y. M., Hu, P. Y., Liu, C. C., and Wang, K. H., "The effect of the molecular mass of the organic matter in raw water on the formation of disinfection by-products," Water Supply: Research & Technology-Aqua, 50(1), 39-45(2001) https://doi.org/10.2166/aqua.2001.0004
  21. Rodriguez, M., Serodes, J., and Roy, D., "Formation and fate of haloacetic acids(HAAs) within the water treatment plant," Water Res., 41, 4222-4232(2007) https://doi.org/10.1016/j.watres.2007.05.048
  22. Malliarou, E., Collins, C. Graham, N., and Nieuwenhuijsen, M. J., "Haloacetic acids in drinking water in the United Kingdom," Water Res., 39, 2722-2730(2005) https://doi.org/10.1016/j.watres.2005.04.052
  23. Nissinen, T. K., Miettinen, I. T., Martikainen, P. J., and Vartiainen, T., "Disinfection by- products in finish drinking waters," Chemosphere, 48, 9-20(2002) https://doi.org/10.1016/S0045-6535(02)00034-6
  24. Moll. D. M., Summers, R. S., Fonseca, A. C., and Matheis, W., "Impact of temperature on drinking water biofilter performance and microbial community structure," Environ. Sci. Technol., 33(14), 2377-2382(1999) https://doi.org/10.1021/es9900757
  25. Melin, E., Eikebrokk, B., Brugger, M., and Odegaard, H., "Treatment of humic surface water at cold temperatures by ozonation and biofiltration," Water Sci. Technol.: Water Supply, 2(5-6), 451-457(2002) https://doi.org/10.2166/ws.2002.0203
  26. 손희종, "회전 드럼형 광촉매 산화장치를 이용한 비스페놀-A 제거," 한국화학공학회지, 39(4), 493-500(2001)