DOI QR코드

DOI QR Code

Synthesis and Characterization of CNT/TiO2 Composites Thermally Derived from MWCNT and Titanium(IV) n-Butoxide

  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Published : 2008.01.20

Abstract

Two kinds of CNT/TiO2 composite photocatalysts were synthesized with multi-walled carbon nanotubes (MWCNTs) and titanium(IV) n-butoxide (TNB) by a MCPBA oxidation method. Since MWCNTs had charge transfer and semiconducting, the CNT/TiO2 composite shows a good photo-degradation activity. The XRD patterns reveal that only anatase phase can be identified for MCT composite, but the HMCT composite synthesized with HCl treatment was observed the mixed phase of anatase and rutile. The EDX spectra were shown the presence as major elements of Ti with strong peaks. From the SEM results, the sample MCT and HMCT synthesized by the thermal decomposition with TNB show a homogenous sample with only individual MWCNTs covered with TiO2 without any jam-like aggregates between CNTs and TiO2. From the photocatalytic results, we could be suggested that the excellent activity of the CNT/TiO2 composites for organic dye and UV irradiation time could be attributed to combination effects between TiO2 and MWCNTs with plausible photodegradation mechanism.

Keywords

References

  1. Jitianu, A.; Cacciaguerra, T.; Benoit, R.; Delpeux, S.; Beguin, F.; Bonnamy, S. Carbon 2004, 42, 1147-1151 https://doi.org/10.1016/j.carbon.2003.12.041
  2. Sun, J.; Iwasa, M.; Gao, L.; Zhang, Q. Carbon 2004, 885- 901
  3. Wang, W.; Serp, P.; Kalck, P.; Faria, J. L. Journal of Molecular Catalysis A: Chemical 2005, 235, 194-199 https://doi.org/10.1016/j.molcata.2005.02.027
  4. Moreno-Castilla, C.; Maldonado-Hodar, J. F.; Carrasco-Marin, F.; Rodrigues-Castellon, E. Langumuir 2002, 18, 2295-2299 https://doi.org/10.1021/la011595u
  5. Orlanducci, S.; Sessa, V.; Terranova, M. L.; Battiston, G. A.; Battiston, S.; Gergasi, R. Carbon 2006, 44, 2839-2843 https://doi.org/10.1016/j.carbon.2006.03.018
  6. O'Connell, M. J. Carbon Nanotubes: Properties and Application; Tayor & Francis: 2006; p 213
  7. Kaneko, M.; Okura, I. Photocatalysis, Science and Technology; Kodansha & Springer: 1999; p 124
  8. Ollis, D. F.; Alekabi, H. Photcatalytic Purification and Treatment of Water and Air; Elsevier: 1993
  9. Dargon, G.; Tomkiewicz, M. J. Phy. Chem. 1993, 97(49), 12651- 12655 https://doi.org/10.1021/j100151a001
  10. Robert, D.; Parra, S.; Pulgarin, C.; Krzton, A.; Weber, J. V. Appl. Surf. Sci. 2000, 167, 51-58 https://doi.org/10.1016/S0169-4332(00)00496-7
  11. Oh, W. C.; Han, S. B.; Bae, J. S. Analytical Science & Technology 2007, 20(4), 279-288
  12. Oh, W. C.; Chen, M. L. Carbon Science 2007, 8(2), 108- 144
  13. Oh, W. C.; Chen, M. L.; Lim, C. S. Journal of Ceramic Processing Research 2007, 8(2), 119-124
  14. Oh, W. C.; Chen, M. L.; Ko, Y. S. Carbon Science 2007, 8(1), 6- 11
  15. Seeger, T.; Redlish, P.; Grobert, N.; Terrones, M.; Walton, D. R. M.; Kroto, H. W. Chem. Phys. Lett. 2001, 339, 41-46 https://doi.org/10.1016/S0009-2614(01)00256-1
  16. Hernadi, K.; Ljubbovic, E.; Seo, J. W.; Forro, L. Acta Mater. 2003, 51, 1447-14452 https://doi.org/10.1016/S1359-6454(02)00539-6
  17. Cao, G. Nanostructures & Nanomaterials; Imperial College Press: 2004; p 344
  18. Yu, K.; Zhao, J.; Tian, Y.; Jiang, M.; Ding, X.; Liu, Y.; Zhu, Y.; Wang, Z. Materials Letters 2005, 59, 3563-3566 https://doi.org/10.1016/j.matlet.2005.06.028
  19. Oh, W. C.; Bae, J. S.; Chen, M. L. Carbon Science 2006, 7(4), 259-265
  20. Maldonado-Hodar, F. J.; Moreno-Castilla, C.; Rivera-Utrilla, J. Applied Catalysis A: General 2000, 203, 151-159 https://doi.org/10.1016/S0926-860X(00)00480-4
  21. Oh, W. C.; Bae, J. S.; Chen, M. L.; Ko, Y. S. Analytical Science & Technology 2006, 19(5), 376-382
  22. Oh, W. C.; Bae, J. S.; Chen, M. L. Bull. Korean Chem. Soc. 2006, 27(9), 1423-1328 https://doi.org/10.5012/bkcs.2006.27.9.1423
  23. Oh, W. C.; Bae, J. S.; Chen, M. L. Analytical Science &Technology 2006, 19(6), 460-467
  24. Inagaki, M.; Hirose, Y.; Matsunage, T.; Tsumura, T.; Toyoda, M. Carbon 2003, 41, 2619-2624 https://doi.org/10.1016/S0008-6223(03)00340-3

Cited by

  1. electrodes vol.20, pp.1, 2010, https://doi.org/10.6111/JKCGCT.2010.20.1.035
  2. Composite under Visible Light vol.2010, pp.1687-529X, 2010, https://doi.org/10.1155/2010/264831
  3. Photodegradation of organic dyes over nickel distributed CNT/TiO2 composite synthesized by a simple sol-gel method vol.29, pp.2, 2011, https://doi.org/10.2478/s13536-011-0023-7
  4. Gas phase synthesis and field emission properties of 3D aligned double walled carbon nanotube/anatase hybrid architectures vol.3, pp.8, 2011, https://doi.org/10.1039/c1nr10340g
  5. Photonic Activity for MB Solution of Metal Oxide/CNT Catalysts Derived from Different Organometallic Compounds vol.20, pp.2, 2012, https://doi.org/10.1080/1536383X.2010.533302
  6. /MWCNT Composite Synthesized by Hydrothermal Method vol.2013, pp.2314-7490, 2013, https://doi.org/10.1155/2013/356025
  7. Composite Catalysts for the Photocatalytic Degradation of MO under Visible Light vol.50, pp.4, 2013, https://doi.org/10.4191/kcers.2013.50.4.269
  8. Characterization of Pd/TiO2 embedded in multi-walled carbon nanotube catalyst with a high photocatalytic activity vol.54, pp.3, 2013, https://doi.org/10.1134/S002315841303018X
  9. /Carbon Nanotube Nanocomposites for Environmental Applications: An Overview and Recent Developments vol.22, pp.5, 2014, https://doi.org/10.1080/1536383X.2012.690458
  10. Characterization of optical, thermal and electrical properties of SWCNTs/PMMA nanocomposite films vol.23, pp.6, 2014, https://doi.org/10.1007/s13726-014-0238-7
  11. Hybrid S-valine functionalized multi-walled carbon nanotubes/poly(amid-imide) nanocomposites containing trimellitimidobenzene and 4-hydroxyphenyl benzamide moieties: preparation, processing, and thermal properties vol.49, pp.21, 2014, https://doi.org/10.1007/s10853-014-8449-z
  12. Adsorption of Brilliant Green by Surfactant Doped Polyaniline/MWCNTs Composite: Evaluation of the Kinetic, Thermodynamic, and Isotherm vol.53, pp.17, 2014, https://doi.org/10.1021/ie500100d
  13. Glucose-functionalized multi-walled carbon nanotubes dispersing and hosting nanotubes for poly(amide–imide) bionanocomposites containing N,N’-(pyromellitoyl)-bis-S-valine vol.22, pp.4, 2015, https://doi.org/10.1007/s10965-015-0690-x
  14. -valine segments vol.27, pp.3, 2015, https://doi.org/10.1177/0954008314552536
  15. Mechanical and flammability characteristics of PC/ABS composites loaded with flyash cenospheres and multiwalled carbon nanotubes vol.38, pp.6, 2017, https://doi.org/10.1002/pc.23667
  16. Visible light assisted photocatalytic degradation of organic dyes on TiO2–CNT nanocomposites vol.73, pp.1, 2015, https://doi.org/10.1007/s10971-014-3496-0
  17. -fructose vol.28, pp.8, 2016, https://doi.org/10.1177/0954008315610395
  18. nanocomposites vol.24, pp.2, 2017, https://doi.org/10.1080/09276440.2016.1199603
  19. Enhancement of the optical and mechanical properties of chitosan using Fe2O3 nanoparticles vol.28, pp.15, 2017, https://doi.org/10.1007/s10854-017-6866-x
  20. Investigation of Electrical and Thermal Properties of Reduced Graphene Oxide-Multiwalled Carbon Nanotubes/PMMA Hybrid Nanocomposite pp.18626300, 2018, https://doi.org/10.1002/pssa.201700476
  21. Energy Gap Associated to Photocatalytic Activity of MWCNT/TiO2/ZnO Nanocomposites vol.95, pp.1662-0356, 2014, https://doi.org/10.4028/www.scientific.net/AST.95.44
  22. Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films vol.24, pp.10, 2015, https://doi.org/10.1088/1674-1056/24/10/105101
  23. , and PEPA with enhanced mechanical, thermal, and flammability characteristics vol.39, pp.S3, 2017, https://doi.org/10.1002/pc.24366
  24. Electrical and structural properties of multi-walled carbon nanotube–doped polymer electrolyte for photo electrochemical device vol.30, pp.8, 2018, https://doi.org/10.1177/0954008318772013
  25. Composites vol.21, pp.21, 2009, https://doi.org/10.1002/adma.200802738
  26. Influence of Crystal Structure on the Chemical Bonding Nature and Photocatalytic Activity of Hexagonal and Cubic Perovskite Compounds vol.29, pp.4, 2008, https://doi.org/10.5012/bkcs.2008.29.4.817
  27. Synthesis and Characterization of CNT / TiO2 Photoelectrocatalytic Electrodes for Methlene Blue Degradation vol.18, pp.11, 2008, https://doi.org/10.3740/mrsk.2008.18.11.583
  28. Photocatalytic Degradation of Methylene Blue by CNT/TiO2 Composites Prepared from MWCNT and Titanium n-butoxide with Benzene vol.45, pp.11, 2008, https://doi.org/10.4191/kcers.2008.45.1.651
  29. Characterization of CNT/TiO2 Electrode Prepared Through Impregnation with TNB and Their Photoelectrocatalytic Properties vol.14, pp.1, 2008, https://doi.org/10.4491/eer.2009.14.1.032
  30. Mesoporous Assembly of Layered Titanate with Well-Dispersed Pt Cocatalyst vol.30, pp.2, 2008, https://doi.org/10.5012/bkcs.2009.30.2.449
  31. Fabrication and Electro-photolysis Property of Carbon Nanotubes/Titanium Composite Photocatalysts for Methylene Blue vol.30, pp.8, 2009, https://doi.org/10.5012/bkcs.2009.30.8.1798
  32. Characterization and relative photonic efficiencies of a new Fe-ACF/TiO2 composite photocatalysts designed for organic dye decomposition vol.15, pp.2, 2009, https://doi.org/10.1016/j.jiec.2008.09.019
  33. Preparation and Photonic Properties of CNT/TiO2 Composites Derived from MWCNT and Organic Titanium Compounds vol.46, pp.3, 2008, https://doi.org/10.4191/kcers.2009.46.3.234
  34. Preparation and Photonic Properties of CNT/TiO2 Composites Derived from MWCNT and Organic Titanium Compounds vol.46, pp.3, 2008, https://doi.org/10.4191/kcers.2009.46.3.234
  35. Electrochemical Preparation of TiO2/CNT Electrodes with a TNB Electrolyte and Their Photoelectrocatalytic Effects vol.46, pp.4, 2008, https://doi.org/10.4191/kcers.2009.46.4.357
  36. Photocatalytic Activity of EG-TiO2 Composite for Various Dye Solutions Under UV Light and Visible Light vol.19, pp.10, 2008, https://doi.org/10.3740/mrsk.2009.19.10.555
  37. Preparation of MWCNT/TiO2 Composites by Using MWCNTs and Titanium(IV) Alkoxide Precursors in Benzene and their Photocatalytic Effect and Bactericidal Activity vol.30, pp.11, 2008, https://doi.org/10.5012/bkcs.2009.30.11.2637
  38. Characterization and photonic properties for the Pt-fullerene/TiO2 composites derived from titanium (IV) n-butoxide and C60 vol.15, pp.6, 2008, https://doi.org/10.1016/j.jiec.2009.09.001
  39. Electro-chemical Preparation of TiO2/CNT Electrodes with TNB Electrolyte and Their Photoelectrocatalytic Effect vol.46, pp.6, 2008, https://doi.org/10.4191/kcers.2009.46.6.554
  40. Visible Light Photoelectrocatalytic Properties of Novel Yttrium Treated Carbon Nanotube/Titania Composite Electrodes vol.31, pp.1, 2010, https://doi.org/10.5012/bkcs.2010.31.01.133
  41. Fabrication and Physicochemical Properties of Carbon/Titania/Bentonite Monolith for Architecture vol.20, pp.3, 2008, https://doi.org/10.3740/mrsk.2010.20.3.167
  42. Photodecomposition of Different Organic Dyes Using Fe-CNT/TiO2 Composites under UV and Visible Light vol.47, pp.2, 2008, https://doi.org/10.4191/kcers.2010.47.2.169
  43. Fabrication of M-CNT/TiO2 (M=Cr, Mn and Fe) Composites and the effect of Transition Metals on their Photocatalytic Activities vol.34, pp.5, 2008, https://doi.org/10.3184/030823410x12744601512628
  44. Relative Photonic Properties of Fe/TiO2-Nanocarbon Catalysts for Degradation of MB Solution under Visible Light vol.31, pp.5, 2008, https://doi.org/10.5012/bkcs.2010.31.5.1128
  45. Kinetic Study of the Visible Light-Induced Sonophotocatalytic Degradation of MB Solution in the Presence of Fe/TiO2-MWCNT Catalyst vol.31, pp.6, 2008, https://doi.org/10.5012/bkcs.2010.31.6.1589
  46. Characterization and Photonic Effect of Novel Ag-CNT/TiO2 Composites and their Bactericidal Activities vol.31, pp.7, 2010, https://doi.org/10.5012/bkcs.2010.31.7.1981
  47. Promoting Effect of MgO in the Photodegradation of Methylene Blue Over MgO/MWCNT/TiO2 Photocatalyst vol.20, pp.7, 2008, https://doi.org/10.3740/mrsk.2010.20.7.345
  48. Preparation and Catalytic Properties of Pt/CNT/TiO2 Composite vol.47, pp.4, 2010, https://doi.org/10.4191/kcers.2010.47.4.269
  49. Photonic Aspects of MB Degradation on Fe-carbon/TiO2 Composites under UV Light Irradiation vol.47, pp.5, 2008, https://doi.org/10.4191/kcers.2010.47.5.433
  50. Synthesis and photocatalytic behaviors of Cr2O3-CNT/TiO2 composite materials under visible light vol.45, pp.24, 2008, https://doi.org/10.1007/s10853-010-4751-6
  51. Visible light photocatalytic properties of novel molybdenum treated carbon nanotube/titania composites vol.34, pp.3, 2008, https://doi.org/10.1007/s12034-011-0115-3
  52. Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2–CNT catalysts vol.18, pp.3, 2008, https://doi.org/10.1016/j.ultsonch.2010.11.008
  53. Photocatalytic Degradation of Methylene Blue by Pd/MWCNT/TiO2 under UV and Visible Light Irradiation vol.49, pp.6, 2008, https://doi.org/10.4191/kcers.2012.49.6.511
  54. Carbon nanotubes supported by titanium dioxide nanoparticles as recyclable and green catalyst for mild synthesis of dihydropyrimidinones/thiones vol.1065, pp.None, 2008, https://doi.org/10.1016/j.molstruc.2014.02.035
  55. Principles and mechanisms of photocatalytic dye degradation on TiO2based photocatalysts: a comparative overview vol.4, pp.70, 2008, https://doi.org/10.1039/c4ra06658h
  56. Band-gap states in unfilled mesoporous nc-TiO2: measurement protocol for electrical characterization vol.47, pp.1, 2008, https://doi.org/10.1088/0022-3727/47/1/015102
  57. Optical, morphology and electrical properties of In2O3 incorporating acid-treated single-walled carbon nanotubes based DSSC vol.49, pp.7, 2008, https://doi.org/10.1088/0022-3727/49/7/075601
  58. 탄소나노튜브(CNT)의 첨가에 따른 TiO2의 광촉매 특성 변화 연구 vol.23, pp.6, 2008, https://doi.org/10.4150/kpmi.2016.23.6.458
  59. Sono-assisted preparation of bio-nanocomposite for removal of Pb2+ ions: Study of morphology, thermal and wettability properties vol.39, pp.None, 2008, https://doi.org/10.1016/j.ultsonch.2017.06.015
  60. Toxicity assessment of TiO2-MWCNT nanohybrid material with enhanced photocatalytic activity on Danio rerio (Zebrafish) embryos vol.165, pp.None, 2018, https://doi.org/10.1016/j.ecoenv.2018.08.093
  61. Effect of energy band misalignment and morphology in In2O3-CNTs on electron transport in dye-sensitized solar cell vol.694, pp.1, 2008, https://doi.org/10.1080/15421406.2020.1723893
  62. Effect of energy band misalignment and morphology in In2O3-CNTs on electron transport in dye-sensitized solar cell vol.702, pp.1, 2020, https://doi.org/10.1080/15421406.2020.1743939
  63. Photoelectrochemical performance of MWCNT-Ag-ZnO ternary hybrid: a study of Ag loading and MWCNT garnishing vol.56, pp.14, 2008, https://doi.org/10.1007/s10853-021-05821-5
  64. Hybrid carbon materials: Synthesis, characterization, and application in the removal of pharmaceuticals from water vol.43, pp.None, 2008, https://doi.org/10.1016/j.jwpe.2021.102279