A Study on the Organic/inorganic Composite Electrolyte Membranes for Dye Sensitized Solar Cell

염료감응형 태양전지를 위한 유기/무기 복합 전해질막에 대한 연구

  • Koo, Ja-Kyung (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Choi, Mi-Jung (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Shin, Chun-Hwa (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Kang, Tae-Un (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Cho, Nam-Jun (Department of Applied Chemical Engineering, Korea University of Technology and Education)
  • 구자경 (한국기술교육대학교 응용화학공학과) ;
  • 최미정 (한국기술교육대학교 응용화학공학과) ;
  • 신춘화 (한국기술교육대학교 응용화학공학과) ;
  • 강태윤 (한국기술교육대학교 응용화학공학과) ;
  • 조남준 (한국기술교육대학교 응용화학공학과)
  • Published : 2008.12.30

Abstract

Organic/inorganic composite electrolyte membranes were prepared for dye sensitized solar cell (DSSC). Polyethylene Glycol (PEG)s with various molecular weight (400, 600, 1,500 and 3,400) was ethoxysilated to fabricate organic/inorganic composite materials through sol-gel processes. The electrolyte membranes were produced by doping the composite materials with NaI and $I_2$, and their ionic conducting behavior was investigated. The ionic conductivity of the composite electrolyte was highly affected by the PEG molecular weight, and the highest conductivity was shown by the composite membrane prepared with PEG with the molecular weight of 1,500. The composite electrolyte membranes showed considerable improvement of ionic conductivity. Compared to PEO electrolyte membranes, the composite electrolyte membrane prepared by PEG, MW 1,500, showed much higher ionic conductivity.

염료감응형 태양전지에 사용되기 위한 유기/무기 복합소재를 합성하였다. 다양한 분자량(400, 600, 1,500, 3,400)의 polyethylene glycol의 양 끝단을 ethoxysilane기로 치환하여 전구체를 제조하였으며, 전구체의 졸-겔 반응을 통하여 복합소재를 합성하였다. 전해질막은 유기/무기 복합소재를 NaI 및 $I_2$로 도핑하여 제조하였으며, 제조한 전해질막의 이온전도 특성을 측정하였다. 전해질막의 이온전도도는 원료로 사용한 PEG에 크게 영향을 받았으며 가장 높은 이온전도도는 분자량 1,500의 PEG를 원료로 사용한 전해질 막에서 볼 수 있었다. 복합전해질막은 전도도에 있어서 큰 향상을 보였다. PEO 전해질막에 비하여 분자량 1,500의 PEC로 제조한 복합전해질막은 월등하게 높은 이온전도도를 보였다.

Keywords

References

  1. A. Nishimoto, K. Agehara, and N. Furuya, "High Ionic Conductivity of Polyether-Based Network Polymer Electrolytes with Hyperbranched Side Chains", Macromolecules, 32, 1541 (1999) https://doi.org/10.1021/ma981436q
  2. D. J. Harris, T. H. Bonagamba, K. Schmidt-Rohr, P. P Soo, D. R. Sadoway, and A. M. Mayers, "Solid-State NMR Investigation of Block Copolymer Electrolyte Dynamics", Macromolecules, 35, 3772 (2002) https://doi.org/10.1021/ma0107049
  3. T. J. Cleij, L. W. Jenneskens, M. Wubbenhorst, and J. van Turnhout, "Comb-Branched Polymer Electrolytes Based on Poly&Isqb(4,7,10,13-tetraoxatetradecyl)methylsilane] and Lithium Percholrate", Macromolecules, 32, 8663 (1999) https://doi.org/10.1021/ma990997u
  4. X. Hou and K. S. Siow, "Ionic conductivity and electrochemical characterization of novel interpenetrating polymer network electrolytes", Solid State Ionics, 147, 391 (2002) https://doi.org/10.1016/S0167-2738(02)00034-6
  5. F. Croce, G. B. Appetecchi, L. Persi, and B. Scrosati, "Nanocomposite polymer electrolytes for lithium batteries", Nature, 394, 456 (1998) https://doi.org/10.1038/28818
  6. S. Chintapalli and R. Frech, "Effect of Plasticizers on Ionic Association and Conductivity in the $(PEO)_9LiCF_3SO_3$ electrolyte", Macromolecules, 29, 3499 (1996) https://doi.org/10.1021/ma9515644
  7. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, "Role of Transient Cross-Links for Transport Properties in Silver-Polymer Electrolytes", Macromolecules, 34, 6052 (2001) https://doi.org/10.1021/ma0020032
  8. S. M. Zahurak, K. L. Kaplan, E. A. Rietman, D. W. Murphy, and R. J. Cava, Macromolecules, 21, 654 (1988) https://doi.org/10.1021/ma00181a020
  9. G. P. Kalaignam, M. S. Kang, and Y. S. Kang, "Effects of compositions on properties of PEOKI-I2 salts polymer electrolytes for DSSC", Solid State Ionics, 177, 1091 (22006) https://doi.org/10.1016/j.ssi.2006.03.013
  10. G. Kastros, T Stergiopoulos, I. M. Arabatiz, G. K. Papadokostaki, and P. Falaras, "A solvent-free polymer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells", J. Photochem. Photobiol, 149, 191 (2002) https://doi.org/10.1016/S1010-6030(02)00027-8
  11. SO. A. Ileperuma, M, A. K. L. Dissanyake, S. Somasunderam, and L. R. A. K. Bandara, "Photoelectrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-based polymer electrolytes", Sol. Energy Mater. Sol. Cells, 84, 117 (2004) https://doi.org/10.1016/j.solmat.2004.02.040
  12. J. Kang, W. Li, X. Wang, Y. Lin, X. Xiao, and S. Fang, "Polymer electrolytes from PEO and novel quaternary ammonium iodides for dye-sensitized solar cells", Electrochim. Acta, 48, 2487 (2003) https://doi.org/10.1016/S0013-4686(03)00290-1
  13. 홍영택, 정진주, 윤경석, "고분자전해질 연료전지용 인산 도핑 술폰화 폴리아릴에테르벤즈이미다졸 고분자전해질 막의 제조 및 특성", 멤브레인, 16, 276 (2006)
  14. 문승현, 우중제, 푸룽창, "스티렌 유도체를 이용한 비불소계 고분자 전해질막의 산화적 안정성 개선", 멤브레인, 17, 294 (2007)
  15. 오세중, "PVA/SSA/HPA 복합막의 고분자전해질 연료전지에의 응용연구", 멤브레인, 16, 9 (2006)
  16. 임지원, 천세원, 전지현, "폴리비닐알콜을 이용한 직접메탄올 연로전지용 이온교환막 제조에 관한 연구", 멤브레인, 13, 191 (2003)
  17. J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, and Y. S. Kang, "Poly(butyl acrylate)/NaI/$I_2$ electrolytes for dye-sensitized nanocrystalline $TiO_2$ Solar cells", Solid State Ionics, 147, 579 (2005)