Effects of LEDs on the Germination, Growth and Physiological Activities of Amaranth Sprouts

몇가지 LED가 아마란서스의 종자발아, 새싹의 생장 및 생리활성에 미치는 영향

Cho, Ja-Yong;Son, Dong-Mo;Kim, Jong-Man;Seo, Beom-Seok;Yang, Seung-Yul;Kim, Byoung-Woon;Heo, Buk-Gu
조자용;손동모;김종만;서범석;양승렬;김병운;허북구

  • Published : 20080600

Abstract

This study was conducted to clarify the effect of light-emitting diode (LED) for the light quality on the germination and physiological activity of amaranth (Amaranthus spp.) sprouts. We have germinated and grown the amaranth sprouts with blue, green, red, white, yellow, red+blue color lights for 14 hours and the dark condition for 10 hour, at the temperature of 25℃ (daytime) / 18℃ (nighttime). We have also made amaranth sprout extracts by methanol and examined into their physiological activities. All seed germination of amaranth sprouts were completed within 3 days after seeding irrespective of light sources. The fresh weight of total sprout has been increased in amaranth sprouts, which showed no significant meaning among the different treatments. However, the physiological activities indicated a significance meaning among the different light quality treatments. The total phenol compound contents were extremely increased in amaranth sprouts grown under the blue color light and the mixed light of blue and red color. And the total flavonoid contents were significantly increased under the red+blue light by 21.2 ㎎·L-1 which increased twice compared with the control. DPPH radical scavenging activity at 2,000 ㎎·L-1 were increased over 34% which were sprouted and grown under the blue or mixed light of red and blue color compared with the control. Nitrite radical scavenging activities of sprouts were most decreased compared with the control when grown under all lights except yellow light. Mushroom tyrosinase inhibition activity of amaranth sprouts was much lower than the control under the blue and mixed light of blue and red color.

아마란서스의 새싹 발아와 생리활성에 효과적인 영향을 미치는 LED 광질 종류를 구명하기 위해 청색, 녹색, 적색, 백색,황색,적색+청색광을 발광14시간,암조건10시간,주간 25℃,야간18℃로 조절하여 종자 발아와 새싹을 생장을 시켰다. 생리활성 조사는 새싹을 메탄올로 추출한 것을 이용하여 실시하였다. 종자 발아율과 발아속도는 광질에 관계없이 3일만에 100% 발아되었고, 파종 후 6일째의 신선중도 처리구간 유의적인 차이가 보이지 않았다. 그러나 광질에 따른 생리활성 물질 함량에는 차이가 나타났는데, 새싹의 총페놀함량은 청색광과 청색+적색광에서 대조구보다 높게 나타났으며,총플라보노이드 함량도 적색+청색 광처리구에서 21.2㎎·L-1로 대조구보다2배 높았다.전자공여능은 추출물 2,000㎎·L-1일 때 청색과 적색+청색 광처리구에서 34% 이상으로 대조구보다 높게 나타났다. 아질산염 소거능은 황색광을 제외한 모든 광질에서 대조구보다 낮게 나타났다. Tyrosinase 저해 활성은 청색과 청색+적색광에서 오히려 대조구보다 낮게 나타났다. 이와 같이 아마란서스 새싹의 생리활성은 LED 광질에 따라 차이가 있었으며, 적용시는 이를 고려하는 것이 좋을 것으로 판단된다.

Keywords

References

  1. Bae, J.H., J.Y. Cho, B.W. Kim, H.G. Jang, and B.G. Heo. 2008. Effects of storage humidity on the sprout growth of mulberry cut twigs. J. Bio-Env. Con. 17:20-25
  2. Brane, A.L. 1975. Toxicology and biochemistry of butylated hydroxy anosole and butylated hydroxy toluene. J. Amer. Oil. Chem. Soc. 52:59-63 https://doi.org/10.1007/BF02901825
  3. Choi, Y.W. 2003. Effect of red, blue, and far-red LEDs for night break on growth, flowering, and photosynthetic rate in Perilla ocymoides. J. Kor. Soc. Hort. Sci. 44:442-446
  4. Dewanto, V., X. Wu, K.K. Adom, and R.H. Liu. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidative activity. J. Agric. Food Chem. 50:3010-1015 https://doi.org/10.1021/jf0115589
  5. Dural, B. and K. Shetty. 2001. The stimulation of phenolics and antioxidant activity in pea elicited by genetically transformed anise root extract. J. Food Biochem. 25:361-377 https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  6. Gray, J. and J.L.R. Dugan. 1975. Inhibition of N-nitrosamine formation in model food system. J. Food Sci. 40:981-985 https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  7. Heo, B.G., Y.S. Park, S.U. Chon, S.Y. Lee, J.Y. Cho, and S. Gorinstein. 2007. Antioxidant activity and cytotoxicity of methanol extracts from aerial parts of Korean salad plants. BioFactors 30:79-89 https://doi.org/10.1002/biof.5520300202
  8. Hwang, M.K., C.S. Huh, and Y.J. Seo. 2004. Optic characteristics comparison and analysis of SMD type Y/G/W HB LED. J. Kllee. 18(4):15-21
  9. Kwack, B.H., and H. Kang. 1985. Effects of specific light qualities on the seed germination of Amaranthus hypochondriacus. J. Kor. Soc. Hort. Sci. 26:158-162
  10. Lee, S.J., D.W. Park, H.G. Jang, C.Y. Kim, Y.S. Park, T.C. Kim, and B.G. Heo. 2006. Total phenol content, electron donating ability, and tyrosinase inhibition activity of pear cut branch extract. Kor. J. Hort. Sci. Technol. 24:338-341
  11. Maneinelli, A.L., H.A. Borthwick, and S.B. Hendricks. 1966. Phytochrome action in tomato seed germination. Bot. Gaz. 127:1-5 https://doi.org/10.1086/336335
  12. Normington, K.W., I. Baker, M. Molina, J.S. Wishnok, S.R. Tannenbaum, and S. Puju. 1986. Characterization of a nitrite scavenger 3-hydroxy-2-pyranone, from Chinese wild plum juice. J. Agric Food Chem. 34:215-221 https://doi.org/10.1021/jf00068a015
  13. Okamoto, K., T. Yanagi, S. Takita, M. Tanaka, T. Higuchi, Y. Ushida, and H. Watanabe. 1996. Development of plant growth apparatus using blue and red LED as artificial light source. Acta Hort. 440:111-116
  14. Park, C.S. 2005. Component and quality characteristics of powdered green tea cultivated in Hwagae area. Kor. J. Food Preserv. 12:36-42
  15. Park, Y.S., S.T. Jung, S.G. Kang, B.G. Heo, P. Arancibia-Avila, F. Toledo, J. Drzewiecki, J. Namiesnik, and S. Gorinstein. 2008. Antioxidants and proteins in ethylene-treated kiwifruits. Food Chemistry 107:640-648 https://doi.org/10.1016/j.foodchem.2007.08.070
  16. Pawelek, J.M. and A.M. Korner. 1982. The biosynthesis of mammalian melanin. Amer. Sci. 70:136-141
  17. Son, K.C., Y.J. Park, G.K. Suh, and B.G. Heo. 2003. Ornamental horticulture. Joongang Life Publishing Co., Seoul
  18. Torry, J.G. 1976. Root hormones and plant growth. Annu. Rev. Plant Physiol. 27:435-459 https://doi.org/10.1146/annurev.pp.27.060176.002251
  19. Yagi, K. 1987. Lipid peroxides and human disease. Chem. Phy. Lipids 45:337-341 https://doi.org/10.1016/0009-3084(87)90071-5