Leaching Behavior of Magnesium from Serpentine in Hydrochloric Acid Solution

염산용액에서 사문석으로부터 마그네슘의 침출거동

Kim, Byung-Su;Yoo, Kyoung-Keun;Kim, Soo-Kyung;Kim, Min-Seuk;Lee, Jae-Chun
김병수;유경근;김수경;김민석;이재천

  • Published : 2008.12.28

Abstract

The leaching of Mg is well known to be the rate-determining step in the aqueous carbonation process of serpentine mineral for CO2 sequestration. Therefore, the understanding of the kinetics of Mg dissolution is essential to optimize leaching conditions for the effective mineral CO2 sequestration using serpentine mineral. In this study, the dissolution behavior of Mg from domestic serpentine mineral was investigated in HCl solutions. The effects of HCl concentration, leaching temperature and time, and agitation speed on the magnesium dissolution were examined. The complete dissolution in 1.0 M HCl was achieved in 30 minutes at 90℃ and a pulp density of 2 g/L. The dissolution kinetics was studied in relation to the textual structure of serpentine. The dissolution rate data was observed to agree well to Jander’s rate equation. It was verified that the dissolution of Mg from serpentine was limited by the diffusion of H3O+ and Mg2+ ions throughout the thin channels formed between silica layers during the dissolution of Mg. The activation energy was determined to be 86.8 kJ/mol.

사문석의 수용액 탄산화에 의한 이산화탄소의 격리에 있어서, 율속단계는 사문석으로부터 마그네슘의 침출로 알려져 있다. 따라서 사문석을 이용하는 광물 이산화탄소 격리의 최적화를 위하여 마그네슘의 침출거동에 대한 이해가 필수적이다. 본 연구에서는 국내산 사문석으로부터 마그네슘의 염산침출에 대한 연구를 수행하였다. 염산농도, 침출온도 및 시간, 교반속도 등 실험변수가 마그네슘의 침출거동에 미치는 영향을 조사하였다. 사문암에 함유된 마그네슘의 완전한 침출은 염산농도 1.0 M, 침출온도 90℃, 광액농도 2 g/L에서 30분간 침출함으로서 이루어졌다. 사문암의 결정구조를 고려하면서 마그네슘 침출반응의 속도론적 해석을 수행하였으며 Jander 속도식을 잘 따르는 것으로 분석되었다. 마그네슘의 염산침출반응은 활성화 에너지가 86.8 kJ/mol 로서, 실리카 층 사이에 형성된 얇은 통로를 통한 H3O+와 Mg2+이온의 확산에 의하여 지배를 받는 확산율속반응으로 판명되었다.

Keywords

References

  1. 고상모, 박충구, 소원주, 2006, '울산지역 사문암의 형성환경 해석을 위한 예비연구,' J. Miner. Soc. Korea, Vol. 19(4), pp. 325-336
  2. 산업자원부, 1999, 사문암의 고부가가치화 기술개발에 관한 최종보고서, 한국자원연구소, 대전, pp. 158-160
  3. 황진연, 2002, '사문석의 특성과 활용,' 광물과 산업, Vol. 15(2), pp. 48-54
  4. Abdel-Aal, E.A. and Rashad, M.M., 2004, 'Kinetic study on the leaching of spent nickel oxide catalyst with sulfuric acid,' Hydrometallurgy, Vol. 74, pp. 189-194 https://doi.org/10.1016/j.hydromet.2004.03.005
  5. Apostolidis, C.I. and Distin, P.A., 1978, 'The kinetics of the sulphuric acid leaching of nickel and magnesium from reduction roasted serpentine,' Hydrometallurgy, Vol. 3, pp. 181-196 https://doi.org/10.1016/0304-386X(78)90019-1
  6. Butt, D.P., Lackner, K.S., Wendt, C.H., Park, Y.S., Bejamin, A., Harradine, D.M., Holesinger, T., Rising, M., and Nomura, K., 1996, 'A method for permanent disposal of $CO_2$ in solid form,' World Resource Review, Vol. 9(3), pp. 324-336
  7. Fouda, M.F.R., Amin, R.E.-S., Abd-Elzaher, M.M., 1996a, 'Extraction of magnesium from Egyptian serpentine ore via reaction with different acids. I. Reaction with sulfuric acid,' Bulletin of Chemistry Society of Japan, Vol. 69(7), pp. 1907-1912 https://doi.org/10.1246/bcsj.69.1907
  8. Fouda, M.F.R., Amin, R.E.-S., Abd-Elzaher, M.M., 1996b, 'Extraction of magnesium from Egyptian serpentine ore via reaction with different acids. II. Reaction with nitric and acetic acids,' Bulletin of Chemistry Society of Japan, Vol. 69(7), pp. 1913-1916 https://doi.org/10.1246/bcsj.69.1913
  9. Hernandez, L.G., Rueda, L.I., Diaz, A.R., Anton, C.C., 1986, 'Preparation of amorphous silica by acid dissolution of sepiolite: kinetic and textural study,' Journal of Colloid and Interface Science, Vol. 109(1), pp. 150-160 https://doi.org/10.1016/0021-9797(86)90290-0
  10. Huijgen, W.J.J. and Comans, R.N.J., 2003, Carbon dioxide sequestration by mineral carbonation; literature Review, ECN-C-03-016, Energy Research Center of the Netherlands, Petten, The Netherlands
  11. Kim, E.-y., Lee, J.-c., Kim, B.-S., Kim, M.-s., 2007, 'Leaching behavior of nickel from waste multi-layer ceramic capacitors,' Hydrometallurgy, Vol. 86(1-2), pp. 89-95 https://doi.org/10.1016/j.hydromet.2006.11.007
  12. Kohlmann, J., Mukherjee, A.B., 2002, Direct dry mineral carbonation for $CO_2$ emissions reduction in Finland, in the proceedings of the 27th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, FL, UAS, March 4-7, pp. 743-754
  13. Kosuge, K., Shimada, K., Tsunashima, 1995, 'Micropore Formation by Acid Treatment of Antigorite,' Chemistry of Materials, Vol. 7, pp. 2241-2246 https://doi.org/10.1021/cm00060a009
  14. Lackner, K.S., Wendt, C.H., Butt, D.P., Joyce, E.L., and Sharp, D.H., 1995, 'Carbon dioxide disposal in carbonate minerals,' Energy, Vol. 20(11), pp. 1153-1170 https://doi.org/10.1016/0360-5442(95)00071-N
  15. Lackner, K.S., Wendt, C.H., Butt, D.P., 1997, 'Progress on binding $CO_2$ in mineral substrates,' Energy Conversion and Management, Vol. 38, pp. S259-264 https://doi.org/10.1016/S0196-8904(96)00279-8
  16. Maroto-Valer, M.M., Zhang, Y., Kuchta, M.E., Andresen, J.M., and Fauth, D.J., 2004, Process for sequestering carbon dioxide and sulfur oxide, Patent WO2004098740
  17. Nagamori, M. and Plumpton, A.J., 1999, 'Thermodynamic and technico-economic analyses of the HCl-leach of magnesite and serpentine,' CIM Bulletin, Vol. 92(1034), pp. 64-71
  18. O'Connor, W.K., Dahlin, D.C., Rush, G.E., Dahlin, C.L., and Collins, W.K., 2002, 'Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products,' Minerals & Metallurgical Processing, Vol. 19 (2), pp. 95-101
  19. Park, A.-H., Jadhav, R., Fan, L.-S., 2003, '$CO_2$ mineral sequestration: chemically enhanced aqueous carbonation of serpentine,' Can. J. Chem. Eng., Vol. 81, pp. 885-890 https://doi.org/10.1002/cjce.5450810373
  20. Paspaliaris, Y., and Tsolakis, Y., 1987, 'Reaction kinetics for the leaching of iron oxides in diasporic bauxite from the Parnassus-Giona Zone (Greece) by hydrochloric acid,' Hydrometallurgy, Vol. 19, pp. 259-266 https://doi.org/10.1016/0304-386X(87)90010-7
  21. Sohn, H.Y., 1978, 'Law of additive reaction times in fluid-solid reactions,' Metall. Trans. B, Vol. 9B(1), pp. 89-96
  22. Teir, S., Kuusik, R., Fogelholm, C.-J., Zevenhoven, R., 2007, 'Production of magnesium carbonates from serpentinite for long-term storage of $CO_2$,' International Journal of Mineral Processing, Vol. 85, pp. 1-15 https://doi.org/10.1016/j.minpro.2007.08.007
  23. Wendt, C.H., Butt, D.P., Lackner, K.S., Vaidya, R., and Ziock, H.-J., 1998, Thermodynamic calculations for acid decomposition of serpentine and olivine in MgCl2 melts III, Los Alamos National Laboratory, LA-UR-98-5633, Los Alamos, NM, USA
  24. Wicks, F.J. and O'Hanley, D.S., 1988, Serpentine Minerals: Structures and Petrology in Hydrous Phyllosilicates, in Reviews in Mineralogy 19, Edited by Bailey, S.W., Mineralogical Society of America, VA, USA, pp. 91-167