Characteristics of Hydrodynamics, Heat and Mass Transfer in Three-Phase Inverse Fluidized Beds

삼상 역 유동층의 수력학, 열전달 및 물질전달 특성

  • Kang, Yong (School of Chemical Engineering, Chungnam National University) ;
  • Lee, Kyung Il (School of Chemical Engineering, Chungnam National University) ;
  • Shin, Ik Sang (School of Chemical Engineering, Chungnam National University) ;
  • Son, Sung Mo (School of Chemical Engineering, Chungnam National University) ;
  • Kim, Sang Done (Department Chemical and Biomolecular Engineering, KAIST) ;
  • Jung, Heon (Korea Institute of Energy Research)
  • 강용 (충남대학교 화학공학과) ;
  • 이경일 (충남대학교 화학공학과) ;
  • 신익상 (충남대학교 화학공학과) ;
  • 손성모 (충남대학교 화학공학과) ;
  • 김상돈 (한국과학기술원 생명화학공학과) ;
  • 정헌 (한국에너지기술연구원)
  • Received : 2008.04.18
  • Accepted : 2008.04.22
  • Published : 2008.06.30

Abstract

Three-phase inverse fluidized bed has been widely adopted with its increasing demand in the fields of bioreactor, fermentation process, wastewater treatment process, absorption and adsorption processes, where the fluidized or suspended particles are small or lower density comparing with that of continuous liquid phase, since the particles are frequently substrate, contacting medium or catalyst carrier. However, there has been little attention on the three-phase inverse fluidized beds even on the hydrodynamics. Needless to say, the information on the hydrodynamics and transport phenomena such as heat and mass transfer in the inverse fluidized beds has been essential for the operation, design and scale-up of various reactors and processes which are employing the three-phase inverse beds. In the present article, thus, the information on the three-phase inverse fluidized beds has been summarized and reorganized to suggest a pre-requisite knowledge for the field work in a sense of engineering point of view. The article is composed of three parts; hydrodynamics, heat and mass transfer characteristics of three-phase inverse fluidized beds. Effects of operating variables on the phase holdup, bubble properties and particle fluctuating frequency and dispersion were discussed in the section of hydrodynamics; effects of operating variables on the heat transfer coefficient and on the heat transfer model were discussed in the section of heat transfer characteristics ; and in the section of mass transfer characteristics, effects of operating variables on the liquid axial dispersion and volumetric liquid phase mass transfer coefficient were examined. In each section, correlations to predict the hydrodynamic characteristics such as minimum fluidization velocity, phase holdup, bubble properties and particle fluctuating frequency and dispersion and heat and mass transfer coefficients were suggested. And finally suggestions have been made for the future study for the application of three-phase inverse fluidized bed in several available fields to meet the increasing demands of this system.

삼상 역 유동층은 유동하거나 부유하는 입자의 크기가 매우 작은 경우나 유동입자의 밀도가 액체보다 작은 담체나 접촉매체 또는 촉매전달물질인 경우에 생물반응기, 발효공정, 폐수처리공정, 흡착, 흡수공정 등에 매우 효과적으로 사용될 수 있어서 그 적용성은 날로 증대되고 있다. 그러나, 삼상 역 유동층에 대해서는 많은 연구가 진행되지 않아 왔으며 수력학적 특성에 대한 연구조차도 미흡한 실정이다. 삼상 역 유동층을 이용한 많은 종류의 반응기와 공정들의 운전과 설계 그리고 scale-up을 위해서는 삼상 역 유동층에서 수력학적 특성과 열전달과 물질전달과 같은 이동현상에 대한 정보는 필수적이라는 것은 자명한 사실이다. 따라서, 본 총설에서는 삼상 역 유동층에 대한 정보들을 공학적 측면에서 요약하고 재정리하여서 이 분야의 현장에서 필요한 지식들을 제안하고자 하였다. 본 논문은 수력학적 특성, 열전달 특성 그리고 물질전달 특성의 세 부분으로 이루어져있다. 즉, 수력학적 특성 부분에서는 운전변수가 상 체류량, 기포의 특성 그리고 유동입자의 분산에 미치는 영향을 검토하였으며, 열전달 특성 부분에서는 삼상 역 유동층에서의 운전변수가 열전달 계수에 미치는 영향을 고찰하였고, 열전달 모델에 대한 정리를 하였으며, 물질전달 특성 부분에서는 운전변수가 연속액상의 축방향 분산계수 및 액상 부피물질전달계수에 미치는 영향에 대해 고찰하였다. 또한, 각 절에서 유동입자의 최소유동화속도, 상 체류량, 기포특성, 유동입자의 요동빈도수 및 유동입자의 분산 등과 같은 수력학적 특성과 열전달 계수 그리고 연속액상의 축방향 확산계수와 물질전달계수 등을 예측할 수 있는 상관식들을 제안하였다. 본 총설의 마지막 절에서는 삼상 역 유동층의 공업적 응용을 위해 앞으로 더 연구해야하는 내용에 대해 제안을 하였다.

Keywords

Acknowledgement

Supported by : 한국에너지기술연구원

References

  1. Buffiere, P. and Moletta, R., "Some Hydrodynamic Characteristics of Inverse Three Phase Fluidized-bed Reactors," Chem. Eng. Sci., 54, 1233-1242(1999) https://doi.org/10.1016/S0009-2509(98)00436-9
  2. Legile, P., Menard, G., Laurent, C., Thomas, D. and Bernis, A., "Contribution to the Study of An Inverse Three-phase Fluidized Bed Operating Countercurrently," Int. Chem. Eng., 32, 41-50(1992)
  3. Fan, L. S., "Gas-Liquid-Solid Fluidization Engineering," Butterworths, Bosten, 368-374(1989)
  4. Kim, S. D. and Kang, Y., "Hydrodynamics, Heat and Mass Transfer in Inverse and Circulating Three-phase Fluidized-bed Reactors for Waste Water Treatment," Studies surface science and catalyst, 159, 103-108(2006) https://doi.org/10.1016/S0167-2991(06)81545-4
  5. Kim, S. D. and Kang, Y., "Heat and Mass Transfer in Threephase Fluidized-bed Reactors-an Overview," Chem. Eng. Sci., 52, 3639-3660(1997) https://doi.org/10.1016/S0009-2509(97)00269-8
  6. Wild, G., Saberian, M., Schwarty, J. and Charpentier, J. C., "Gasliquid- solid Fluidized-bed Reactors: State of Art and Industrial Possibilities," International Chem. Eng., 24, 639-678(1984)
  7. Garcia-Calderon, D., Buffiere, P., Moletta, R. and Elmaleh, S., "Anaerobic Digestion of Wine Distillery Wastewater in Downflow Fluidized Bed," Wat. Res., 32, 3593-3600(1998) https://doi.org/10.1016/S0043-1354(98)00134-1
  8. Ibrahim, Y. A. A., Briens, C. L., Margaritis, A. and Bergongnou, M. A., "Hydrodynamic Characteristics of a Three-phase Inverse Fluidized-bed Column," AIChE J., 42, 1889-1900(1996) https://doi.org/10.1002/aic.690420710
  9. Kang, Y., Fan, L. T., Min, B. T. and Kim, S. D., "Promotion of Oxygen Transfer in Three-phase Fluidized-bed Bioreactors by Floating Bubble Breakers," Biotechnol. Bioeng., 37, 580-586(1991) https://doi.org/10.1002/bit.260370613
  10. Tokuyama, H., Nii, S., Kawaizumi, F. and Takahashi, K., "Removal of Dilute Nitric Acid by Anion Exchange Using a Countercurrent Multistage Fluidized-bed Column," Ind. Eng.Che. Res., 41, 3447-3453(2002) https://doi.org/10.1021/ie010373o
  11. Krishnaiah, K., Gum, S. and Sekar, V., "Hydrodynamic Studies in Inverse Gas-liquid-solid Fluidization," Chem. Eng. J., 51, 109- 112(1993) https://doi.org/10.1016/0300-9467(93)80017-I
  12. Lee, D. H., Epatein, N. and Grace, J. R., "Hydrodynamic Transition from Fixed to Fully Fluidized Beds for Three-phase Inverse Fluidization," KJChE, 17, 684-690(2000)
  13. Renganathan, T. and Krishnaiah, K., "Prediction of Minimum Fluidization Velocity in two and Three Inverse Fluidized Beds," Can. J. Chem. Eng., 81, 853-860 (2003)
  14. Fan, L. S., Muroyama, K. and Shern, S. H., "Hydrodynamic Characteristics on Inverse Fluidization in Liquid-solid and Gasliquid- solid Systems," Chem. Eng. J. and Biochem. Eng. J., 24, 143-150(1982a)
  15. Fan, L. S., Muroyama, K. and Shern, S. H., "Some Researches on Hydrodynamics of Inverse Gas-liquid-solid Fluidization," Chem. Eng. Sci., 37, 1570-1572 (1982b) https://doi.org/10.1016/0009-2509(82)80016-X
  16. Han, H. D., Choi, H. S., Kang, Y and Kim, S. D., "Effects of Surface Property of Solid Particles on the Hydrodynamic Characteristics of Three-phase Inverse Fluidized Beds," J. KIChE, 40, 209-217(2002)
  17. Kim, U. Y., Son, S. M., Kang, S. H., Kang, Y and Kim, S. D., "Residence Time Distribution and Dispersion of Gas Phase in a Wet Gas Scrubbing System," Korean J. Chem. Eng., 24, 892-896 (2007) https://doi.org/10.1007/s11814-007-0061-3
  18. Kim, S. D. and Kang. Y., "Dispersed Phase Characteristics in Three-phase Fluidized Beds,"Mix Flow Hydrodynamics, Advances in Engineering Fluid Mechanics Series, N. P. Cheremisinoff Edn. Gulf Comp. Houston(1996)
  19. Comte, M. P., Bastoul, D., Hebrard, G., Roustan, M. and Lazarova, V., "Hyrodynamics of a Three-phase Fluidized Bed - the Inverse Turbulent Bed," Chem. Eng. Sci. 52, 3971-3977(1997) https://doi.org/10.1016/S0009-2509(97)00240-6
  20. Shin, I. S., Son, S. M., Kang, Y., Kang, S. H. and Kim, S. D., "Phase Holdup Characteristics of Viscous Three-Phase Inverse Fluidized Beds," J. Ind. Eng. Chem., 13, 971-978(2007)
  21. Son, S. M., Yun, J. H., Kim, H. T., Song, P. S., Kang, Y. and Kim, S. D., "Axial Variation and Distribution of Bubble Properties in Gas-liquid Countercurrent Fluidized Beds," Korean Chem. Eng. Res., 42, 235-240(2004)
  22. Son, S. M., Kang, S. H., Kim, U. Y., Kang, Y. and Kim, S. D., "Bubble Properties in Three-Phase Inverse Fluidized Beds with Viscous Liquid Medium," Chem. Eng. Processing, 46, 736-741 (2007) https://doi.org/10.1016/j.cep.2006.10.002
  23. Kim, H. T., Song, P. S., Choi, G. S., Kim, S. W. and Kang, Y., "Size, Frequency and Rising Velocity of Bubbles in a Three-Phase Inverse Fluidized Bed," J. Korean Ind. Eng. Chem., 13, 691-696 (2002)
  24. Son, S. M., Song, P. S., Lee, C. G., Kang, S. H., Kang, Y. and Kusakabe, K., "Bubbling Behavior in Gas-liquid Countercurrent Bubble Column Bioreactors," J. Chem. Eng. Japan., 37, 990-998 (2004) https://doi.org/10.1252/jcej.37.990
  25. Lee, K. I., Son, S. M., Kim, U. Y., Kang, Y., Kang, S. H., Kim, S. D., Lee, J. K., Seo, Y. C. and Kim, W. H., "Particle Dispersion in Viscous Three-phase Inverse Fluidized Beds," Chem. Eng. Sci., 62, 7060-7067(2007) https://doi.org/10.1016/j.ces.2007.08.024
  26. Kang, S. H., Lee, C. G., Jung, S. H., Son, S. M. and Kang, Y., "Chaos Analysis of Pressure Fluctuations at Steady State and Unsteady State in Aerobic Three-phase Inverse Fluidized Beds," J. KSEE, 26, 1191-1197(2004)
  27. Son, S. M., Kim, H. T., Kang, S. H., Kang, Y. and Kim, S. D., "Analysis of Dispersion Behavior of Fluidized Particles in Gasliquid Countercurrent Fluidized Beds," Korean Chem. Eng. Res., 42, 332-337(2004)
  28. Cho, Y. J., Park, H. Y., Kim, S. W., Kang, Y. and Kim, S. D., "Heat Transfer and Hydrodynamics in two- and Three-phase Inverse Fluidized Beds," I&EC Research., 41, 2058-2063(2002) https://doi.org/10.1021/ie0108393
  29. Son, S. M., Lee, K. I., Kang, S, H., Kang, Y. and Kim, S. D., "Heat Transfer Coefficient in Viscous Three-phase Inverse Fluidized Beds," AIChE J., 53, 3011-3016(2007) https://doi.org/10.1002/aic.11310
  30. Hatate, Y., Tajiri, S., Fukumoto, T., Uemura, Y. and Hano, T., "Heat Transfer Coefficient in Three-phase Vertical Downflows of Gas-liquid-fine Solid Particles System," J. Chem. Eng. Japan, 23, 370-372(1990) https://doi.org/10.1252/jcej.23.370
  31. Park, H. Y., Kim, S. W., Cho, Y. J., Kang Y. and Kim, S. D., "Heat Transfer Characteristics of Three-phase Inverse Fluidized Beds," J. KIChE, 39, 619-623(2001)
  32. Nikov, I. and Karamanev, D., "Liquid-solid Mass Transfer in Inverse Fluidized Bed," AIChE J., 37, 781-784(1991) https://doi.org/10.1002/aic.690370515
  33. Kim, S. W. Song, P. S., Kang, Y. and Kim, S. D., "Mass Transfer Characteristics in Aerobic Three-phase Inverse Fluidized Beds," J. KIChE, 40, 482-487 (2002)
  34. Kim, S. W., Kim, H. T., Song, P. S., Kang, Y. and Kim, S. D., "Liquid Dispersion and Gas-liquid Mass Transfer in Three-phase Inverse Fluidized Beds," Can. J, Chem. Eng., 81, 621-625(2003) https://doi.org/10.1002/cjce.5450810338
  35. Nikolov, V., Farag, I. and Nikov, I., "Gas-liquid Mass Transfer in Bioreactor with Three-phase Inverse Fluidized Bed," Bioprocess Eng., 23, 427-430(2000) https://doi.org/10.1007/s004499900124
  36. Song, P. S., Kang, S. H., Choi, W.K, Jung, C. H., Oh, W. Z. and Kang. Y., "Recovery of Copper Powder from Wastewater in Three-phase Inverse Fluidized Bed Reactors," Studies Surface Science and Catalyst, 159, 537-540 (2006) https://doi.org/10.1016/S0167-2991(06)81652-6
  37. Tang, W. T. and Fan, L. S., "Gas-liquid Mass Transfer in a Three-phase Fluidized Bed Containing Low Density Particles," I&EC Research, 29, 128-133(1990)