The Protective Effect of EGCG on INS-1 Cell in the Oxidative Stress and Mechanism

산화스트레스에 대한 EGCG (Epigallocatechin Gallate)의 INS-1 세포 보호효과와 기전

Kim, Mi-Kyung;Jung, Hye-Sook;Yoon, Chang-Shin;Kwon, Min-Jeong;Koh, Kyung-Soo;Rhee, Byung-Doo;Park, Jeong-Hyun
김미경;정혜숙;윤창신;권민정;고경수;이병두;박정현

  • Published : 2008.04.01

Abstract

Background: Oxidative stress is important in both diabetic complications and the development and the progression of type 2 diabetes via the effects on the pancreatic β-cells. EGCG (epigallocatechin galleate), a major constituent of green tea, has been known to have beneficial effects on various diseases through the mechanisms of antioxidant and cell signaling modulation. But, very small numbers of studies were published about the direct effects of EGCG on the pancreatic β cell lines. We performed this study to see the protective effect of EGCG on pancreatic β cell line under H2O2 and the mechanisms of this phenomenon.Methods: We used INS-1 cells and hydrogen peroxide as an oxidative stressor. Their viabilities were verified by MTT assay and FACS. The activity of glutathione peroxidase was assessed by total glutathione quantification kit. Western blot and semi-quantitative RT-PCR for the catalase, SOD (superoxide dismutase), PI3K and Akt were performed. Functional status of INS-1 cells was tested by GSIS (glucose stimulated insulin secretion).Results: The biological effects of EGCG were different according to its concentrations. 10 μM EGCG effectively protected hydrogen peroxide induced damage in INS-1 cells. The expression and the activity of SOD, catalase and the glutathione peroxidase were significantly increased by EGCG. EGCG significantly increased PI3K and Akt activity and its effect was inhibited partially by wortmannin. GSIS was well preserved by EGCG.Conclusion: EGCG in low concentration effectively protected INS-1 cells from the oxidative stress through the activation of both antioxidant systems and anti-apoptosis signaling. Further studies will be necessary for the more detailed mechanisms and the clinical implications. (KOREAN DIABETES J 32:121~130, 2008)

연구배경: 산화스트레스는 만성 당뇨병 합병증의 발생에도 중요할 뿐 아니라 췌장 베타세포에 대한 직접적이거나 간접적인 영향으로 제2형 당뇨병의 발생과 진행에도 중요한 역할을 하는 것으로 밝혀지고 있다. 녹차의 주요 추출물 중의 하나인 EGCG (epigallocatechin galleate)는 각종 암 치료를 비롯하여, 심혈관계질환 및 뇌변성질환에 좋은 영향을 미친다고 알려져 왔으며 임상 연구에서도 당뇨병의 발생을 감소시키는 것으로 알려져 왔다. 그 기전은 전통적으로 잘 알려진 항산화제로서의 역할 뿐 아니라 세포 전달 체계의 변화를 통해서 이루어지는 것으로 보고되고 있다. 그러나 췌장 베타세포에서 EGCG가 직접적으로 미치는 영향에 대해서는 많이 알려져 있지 않다. 본 연구는 과산화수소를 이용한 산화스트레스하에서 EGCG가 INS-1 세포를 보호할 수 있는지를 살펴보고 그 기전을 보고자 하였다.방법: INS-1 세포는 RPMI 1640배지에서 배양하였고, 산화스트레스는 과산화수소수를 이용한 모델을 사용하였다. 세포의 생존능은 MTT assay와 annexin V와 porpium iodide (PI)를 사용한 FACS로 확인하였다. glutathione peroxidase 활성도는 total glutathione quantification kit로 측정하였고 catalase, SOD (superoxide dismutase), PI3K와 Akt의 mRNA와 활성도는 Western blot과 semi-quantitative RT-PCR를 이용하여 측정되었다. PI3K 억제제인 wortmannin을 전처리한 후 세포의 생존 정도를 FACS로 측정하였다. INS-1 세포의 기능적인 측면은 포도당 자극에 의한 인슐린분비(GSIS)로 평가하였다 결과: 산화스트레스하에서의 EGCG의 효과는 농도에 따라 차이가 나서, 10 μM의 EGCG에서는 세포 생존도의 증가가 관찰되었으나, 50 μM 이상의 농도에서는 세포 생존율이 감소하였으며, 이는 농도가 증가됨에 따라 더 감소하였다. SOD, catalase와 glutathione peroxidase의 mRNA 발현과 단백질의 양은 EGCG 처리에 의해 유의하게 증가되었다. EGCG는 PI3K와 Akt 활성도를 증가시켰고, PI3K 억제제에 의해 EGCG의 효과는 부분적으로 감소되었다. 포도당 자극에 의한 인슐린분비는 EGCG에 의해 잘 보존되었다. 결론: EGCG는 낮은 농도에서 INS-1 세포를 산화스트레스로부터 효과적으로 보호할 수 있었고, 항산화효과와 세포자연사(apoptosis)방지에 관여하는 세포 신호 전달을 기전으로 하고 있었다. 더 명확한 기전과 임상적 적용을 위해서는 더 많은 연구가 있어야 할 것이다.

Keywords

References

  1. Christopher JR: Type 2 Diabetes-a Matter of B cell Life and Death? Science 307:380-84, 2005 https://doi.org/10.1126/science.1104345
  2. Donath MY, Ehses JA, Maedler K, Shumann DM, Ellingsgaard H, Eppler E, Reinecke M: Mechanisms of beta cell death in type 2 diabetes. Diabetes 54(Suppl 2):S108-13, 2005 https://doi.org/10.2337/diabetes.54.suppl_2.S108
  3. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC: Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102-10, 2003 https://doi.org/10.2337/diabetes.52.1.102
  4. Kahn SE: The relative contributions of insulin resistance and $\beta$-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 46:3-19, 2003 https://doi.org/10.1007/s00125-003-1190-9
  5. Robertson RP, Harmon J, Tran PO, Poitout V: Beta cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53 (Suppl. 1):S119-24, 2004 https://doi.org/10.2337/diabetes.53.2007.S119
  6. Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S: Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type II diabetic patients. Diabetologia 45:85-96, 2002 https://doi.org/10.1007/s125-002-8248-z
  7. Green K, Brand MD, Murphy MP: Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes 53 (Suppl 1):S110-8, 2004 https://doi.org/10.2337/diabetes.53.2007.S110
  8. Evans JL, Goldfine ID, Maddux BA, Grodsky GM: Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52:1-8, 2003 https://doi.org/10.2337/diabetes.52.1.1
  9. Kajimoto Y, Kaneto H: Role of oxidative stress in pancreatic $\beta$-cell dysfunction. Ann N Y Acad Sci 1011:168-76, 2004 https://doi.org/10.1196/annals.1293.017
  10. Beecher GR, Warden BA, Merken H: Analysis of tea polyphenols. Proc Soc Exp Biol Med 220:267-70, 1999
  11. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A: Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560-8, 2002 https://doi.org/10.1093/ajcn/76.3.560
  12. Masuda M, Suzui M, Weinstein IB: Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clin Cancer Res 7:4220-9, 2001
  13. Liang YC, Lin-shiau SY, Chen CF, Lin JK: Suppression of extracellular signals and cell proliferation through EGF receptor binding by (-)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J Cell Biochem 67:55-65, 1997 https://doi.org/10.1002/(SICI)1097-4644(19971001)67:1<55::AID-JCB6>3.0.CO;2-V
  14. Sachinidis A, Seul C, Seewald S, Ahn H, Ko Y, Vetter H: Green tea compounds inhibit tyrosine phosphorylation of PDGF $\beta$-receptor and transformation of A172 human glioblastoma. FEBS Lett 471:51-5, 2000 https://doi.org/10.1016/S0014-5793(00)01360-0
  15. Shimizu M, Deguchi A, Lim JT, Moriwaki H, Kopelovich L, Weinstein IB: (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res 11:2735-46, 2005 https://doi.org/10.1158/1078-0432.CCR-04-2014
  16. Yang GY, Liao J, Li C, Chung J, Yurkow EJ, Ho CT, Yang CS: Effect of black and green tea polyphenols on c-jun phosphorylation and $H_2O_2$ production in transformed and non-transformed human bronchial cell lines: possible mechanisms of cell growth inhibition and apoptosis induction. Carcinogenesis 21:2035-9, 2000 https://doi.org/10.1093/carcin/21.11.2035
  17. Peng G, Wargovich MJ, Dixon DA: Anti-proliferative effects of green tea polyphenol EGCG on Ha-Rasinduced transformation of intestinal epithelial cells. Cancer Lett 238:260-70, 2006 https://doi.org/10.1016/j.canlet.2005.07.018
  18. Hou Z, Sang S, You H, Lee MJ, Hong J, Chin KV, Yang CS: Mechanism of action of (-)-epigallocatechin -3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res 65:8049-56, 2005 https://doi.org/10.1158/0008-5472.CAN-05-0480
  19. Albrecht DS, Clubbs EA, Ferruzzi M, Bomser JA: Epigallocatechin-3-gallate (EGCG) inhibits PC-3 prostate cancer cell proliferation via MEK- independent ERK1/2 activation. Chem Biol Interact 171:89-95, 2008 https://doi.org/10.1016/j.cbi.2007.09.001
  20. Koh SH, Kwon H, Kim KS, Kim J, Kim MH, Yu HJ, Kim M, Lee KW, Do BR, Jung HK, Yang KW, Appel SH, Kim SH: Epigallocatechin gallate prevents oxidative-stress-induced death of mutant Cu/Znsuperoxide dismutase (G93A) motoneuron cells by alteration of cell survival and death signals. Toxicology 202:213-25, 2004 https://doi.org/10.1016/j.tox.2004.05.008
  21. Koh SH, Kim SH, Kwon H, Kim JG, Kim JH, Yang KH, Kim J, Kim SU, Yu HJ, Do BR, Kim KS, Jung HK: Phosphatidylinositol-3 kinase/Akt and GSK-3 mediated cytoprotective effect of epigallocatechin gallate on oxidative stress-injured neuronal- differentiated N18D3 cells. Neurotoxicology 25:793-802, 2004 https://doi.org/10.1016/j.neuro.2004.02.001
  22. Katiyar SK, Afaq F, Azizuddin K, Mukhtar H: Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (-) -epigallocatechin-3-gallate. Toxicol Appl Pharmacol 176:110-7, 2001 https://doi.org/10.1006/taap.2001.9276
  23. Levites Y, Amit T, Youdim MB, Mandel S: Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 277:30574-80, 2002 https://doi.org/10.1074/jbc.M202832200
  24. Iso H, Date C, Wakai K, Fukui M, Tamakoshi A JACC Study Group: The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann Intern Med. 144:554-62, 2006 https://doi.org/10.7326/0003-4819-144-8-200604180-00005
  25. Tsuneki H, Ishizaka M, Terasawa M, Wu JB, Sasaoko T, Kimura I: Effect of Green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacol 4:18, 2004 https://doi.org/10.1186/1471-2210-4-18
  26. Sabu MC, Smitha K, Kuttan R: Anti-diabetic diabetic of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethanopharmacol. 83:109-16, 2002 https://doi.org/10.1016/S0378-8741(02)00217-9
  27. Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M: Epigallocatechin gallate, a constituent of Green tea represses hepatic glucose production. J Biol Chem 277:34933-40, 2002 https://doi.org/10.1074/jbc.M204672200
  28. Wu LY, Juan CC, Ho LT, Hsu YP, Hwang LS: Effect of green tea supplementation on insulin sensitivity in Sprague-Dawley rats. J Agric Food Chem 52:643-8, 2004 https://doi.org/10.1021/jf030365d
  29. Song Y, Manson JE, Buring JE, Sesso HD, Liu S: Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. J Am Coll Nutr 24: 376-84, 2005 https://doi.org/10.1080/07315724.2005.10719488
  30. Doronicheva N, Yasui H, Sakurai H: Chemical structure-dependent differential effects of flavonoids on the catalase activity as evaluated by a chemiluminescent method. Biol Pharm Bull 30:213-7, 2007 https://doi.org/10.1248/bpb.30.213
  31. Scalbert A, Morand C, Manach C, Remesy C: Absorption and metabolism of polyphenols in the gut and impact on health, Biomed. Pharmacother 56:276 -82, 2002 https://doi.org/10.1016/S0753-3322(02)00205-6
  32. Williams RJ, Spencer JP, Rice-Evans C: Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med. 36:838-49, 2004 https://doi.org/10.1016/j.freeradbiomed.2004.01.001
  33. Agullo G, Gamet-Payrastre L, Manenti S, Viala C, Remesy C, Chap H, Payrastre B: Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem Pharmacol 53: 1649-57, 1997 https://doi.org/10.1016/S0006-2952(97)82453-7
  34. Balasubramanian R, Efimova T, Eckert RL: Green tea polyphenol stimulates a Ras, MEKK1, MEK3, and p38 cascade to increase activator protein 1 factor -dependent involucrin gene expression in normal human keratinocytes. J Biol Chem 277:1828-36, 2002 https://doi.org/10.1074/jbc.M110376200
  35. Agullo G, Gamet-Payrastre L, Manenti SC, Remesy C, Chap H, Payrastre B: Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem Pharmacol 53:1649-57, 1997 https://doi.org/10.1016/S0006-2952(97)82453-7
  36. YaWen C, ChunFa H, KehSung T, RongSen Y, ChengChieh Y, ChingYao Y, ShoeiYn L, ShingHwa L: The role of phosphoinositide 3-Kinase/Akt signaling in low-dose mercury-induced mouse pancreatic $\beta$-cell dysfunction in vitro and in vivo. Diabetes 55:1614-24, 2006 https://doi.org/10.2337/db06-0029
  37. Lu M, Bi CS, Gong XG, Chen HM, Sheng XH, Deng TL, Xu KD: Anti-proliferative effects of recombinant iron superoxide dismutase on HepG2 cells via a redox-dependent PI3k/Akt pathway. Appl Microbiol Biotechnol. 76:193-201, 2007 https://doi.org/10.1007/s00253-007-0939-3
  38. 권민정, 정혜숙, 김미경, 강성훈, 서광욱, 송재광, 윤태연, 전민경, 하태환, 윤창신, 김미경, 이우제, 노정현, 권수경, 김동준, 고경수, 이병두, 임경호, 이순희, 박정현: INS-1 세포에서 항산화 효과를 통한 Quercetin의 세포보호 효과. 당뇨병 31:383-90, 2007 https://doi.org/10.4093/jkda.2007.31.5.383
  39. Yun SY, Kim SP, Song DK: Effects of (-)-epigallocatechin-3-gallate on pancreatic beta-cell damage in streptozotocin-induced diabetic rats. Eur J Pharmacol. 541:115-21, 2006 https://doi.org/10.1016/j.ejphar.2006.04.040
  40. Han MK: Epigallocatechin gallate, a constituent of green tea, suppresses cytokine-induced pancreatic beta-cell damage. Exp Mol Med. 35:136-9, 2003 https://doi.org/10.1038/emm.2003.19