DOI QR코드

DOI QR Code

Amount of Telomeric DNA on Pig Lymphocytes by Quantitative Fluorescence in situ Hybridization

양적형광접합보인법(Q-FISH)에 의한 돼지 백혈구 세포의 텔로미어 함량 분석

  • Sohn, Sea-Hwan (Department of Animal Science and Biotechnology, Jinju National University) ;
  • Jung, Hyun-Jin (Department of Animal Science and Biotechnology, Jinju National University) ;
  • Choi, Duk-Soon (Department of Animal Science and Biotechnology, Jinju National University)
  • 손시환 (진주산업대학교 동물생명과학과) ;
  • 정현진 (진주산업대학교 동물생명과학과) ;
  • 최덕순 (진주산업대학교 동물생명과학과)
  • Published : 2008.08.01

Abstract

The amount of telomeric DNA was quantified across different breeds(Landrace, Duroc, Yorkshire and Berksire), at different ages(90 days old and 180 days old) and among sexes(male and female) in pigs raised at the Performance Testing Station of Korea Swine Association, Jinkyo, Korea. The telomeric DNA amount was quantified by Quantitative Fluorescence In Situ Hybridization(Q-FISH) using a porcine telomeric DNA probe on interphase nuclei of lymphocytes. Analysis revealed that the amount of telomeric DNA on the pig lymphocytes was found to decrease with age. The quantity of telomeres significantly differed among breeds at 90 days of age. The colored breeds such as Berkshire and Duroc had higher amount of telomeric DNA than the Yorkshire and Landrace breed. In addition, the amount of telomeric DNA in male lymphocytes was significantly higher than that of females. In the correlation coefficients between the telomere quantity and their productive traits; average daily gain, loin percent and index value were positively correlated, whereas body length, feed efficiency and back fat thickness correlated negatively. However, the correlation coefficients were very low and not significant. Therefore, this study suggests that the amount of telomeres on lymphocytes can be considered as a physiological marker but not as a productive marker in pig.

연구에서는 돼지의 세포 분화 및 활성적 특이성과 개체의 성장, 노화의 생물학적 특성을 구명하고자 국내 대표적인 종돈을 대상으로 telomeric DNA probe를 이용한 양적형광접합보인법(Q-FISH)으로서 백혈구 세포의 연령 별, 품종 별, 성 별 텔로미어 함량을 분석 고찰하고, 텔로미어 함유율과 개체 별 각 생산 능력과의 연관성을 검토하고자 하였다. 본 연구에 공시된 품종은 대한양돈협회 제2종돈능력검정소에서 검정 사육된 Yorkshire, Landrace, Duroc 및 Berkshire종 암수 100두 이상으로서 분석 결과, 돼지의 연령이 증가함에 따라 유의한 텔로미어 함유율의 감소를 나타내었고, 품종 간에 있어서도 유색 종이 백색 종에 비해 유의적으로 높은 텔로미어 함유율을 보였으며, 성 간에도 수컷이 암컷에 비해 높은 텔로미어 함유율을 나타내었다. 한편 각 개체 별 능력검정 성적과 텔로미어 함유율 간의 상관관계를 분석한 바 일당 증체량, 정육율 및 선발지수와는 정(+)의 상관을 보이고, 체장, 사료 요구율 및 등지방 두께와는 부(-)의 상관을 보여 선발 지표로서 매우 바람직한 양상을 보이나 이들 간의 상관계수가 낮고 또한 모든 계수가 유의성이 없는 것으로 분석되어 각 경제형질과 개체의 텔로미어 함유율 간에 큰 연관성이 없는 것으로 나타났다. 이상의 결과들을 종합하여 볼 때 텔로미어 함유율이 돼지의 생리 표지로서 활용은 가능하나 생산능력의 표지로서 이용하기에는 다소 어려움이 있는 것으로 사료된다.

Keywords

References

  1. Ahmed, A. and Tollefsbol, T. 2001. Telomeres and telomerase: basic science implications for aging. J. Am. Geriatr. Soc. 49(8):1105-1109 https://doi.org/10.1046/j.1532-5415.2001.49217.x
  2. Argyle, D., Ellsmore, V., Gault, E. A., Munro, A. F. and Nasir, L. 2003. Equine elomeres and telomerase activity in cellular immortalisation and ageing. Mech Ageing Dev 124:759-764 https://doi.org/10.1016/S0047-6374(03)00104-0
  3. Benetos, A., Okuda, K., Lajemi, M., Kimura, M., Thomas, F., Skurnick, J., Labat, C., Bean, K. and Aviv, A. 2001. Telomere length as an indicator of biological aging: The gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 37(2):381-385 https://doi.org/10.1161/01.HYP.37.2.381
  4. Brown, W. R. A., MacKinnon, P. J., Villasante, A., Spurr, N., Buckle, V. J. and Dobson, M. J. 1990. Structure and polymorphism of human telomere-associated DNA. Cell 63:119-132 https://doi.org/10.1016/0092-8674(90)90293-N
  5. Chen, J. L., Blasco, M. A. and Greider, C. W. 2000. Secondary structure of vertebrate telomerase RNA. Cell 100:503-514 https://doi.org/10.1016/S0092-8674(00)80687-X
  6. Cottliar, A. S. and Slavutsky, I. R. 2001. Telomeres and telomerase activity: their role in aging and in neoplastic development. Medicina 61:335-342
  7. de la Sena, C., Chowdhary, B. P. and Gustavsson, I. 1995. Localization of telomeric(TTAGGG)n sequences in chromosomes of some domestic animals by fluorescence in situ hybridization. Hereditas 123:269-274 https://doi.org/10.1111/j.1601-5223.1995.t01-1-00269.x
  8. De Lange, T., Shiue, L., Myers, R. M., Cox, D. R., Naylor, S. L., Killery, A. M. and Varmus, H. E. 1990. Structure and variability of human chromosome ends. Mol Cell Biol 10:516-527
  9. Deng, Y. and Chang, S. 2007. Role of telomeres and telomerase in genomic instability, senescence and cancer. Lab Invest. 87(11):1071-1076 https://doi.org/10.1038/labinvest.3700673
  10. Evans, R. W. 2001. In: J. L. Platt, Editor, Xenotransplantation, ASM Press, Washington, DC. pp. 29-51
  11. Fradiani, P. A., Ascenzioni, F., Lavitrano, M. and Donini, P. 2004. Telomeres and telomerase activity in pig tissues. Biochime 86:7-12 https://doi.org/10.1016/j.biochi.2003.11.009
  12. Gan, Y., Engelke, K. J., Brown, C. A. and Au, J. L. 2001. Telomere amount and length assay. Pharma. Res. 18(12):1655-1659 https://doi.org/10.1023/A:1013306109801
  13. Greider, C. W. and Blackburn, E. H. 1985. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405-413 https://doi.org/10.1016/0092-8674(85)90170-9
  14. Kipling, D. and Cooke, H. J. 1990. Hypervariable ultra-long telomeres in mice. Nature 347:400-402 https://doi.org/10.1038/347400a0
  15. Kozik, A., Bradbury, E. M. and Zalensky, M. 1998. Increased telomere size in sperm cells of mammals with long terminal(TTAGGG)n arrays. Mol Reprod Dev 51:98-104 https://doi.org/10.1002/(SICI)1098-2795(199809)51:1<98::AID-MRD12>3.0.CO;2-Q
  16. Londono-Vallejo, J. A. 2008. Telomere instability and cancer. Biochimie. 90(1):73-82 https://doi.org/10.1016/j.biochi.2007.07.009
  17. McKevitt, T. P., Nasir, L., Devlin, P. and Argyle, D. J. 2002. Telomere lengths in dogs decrease with increasing donor age. J Nutr 132:1604S-1606S
  18. Miyashita, N., Shiga, K., Yonai, M., Kaneyama, K., Kobayashi, S., Kojima, T., Goto, Y., Kishi, M., Aso, H., Suzuki, T., Sakaguchi, M. and Nagai, T. 2002. Remarkable difference in telomere lengths among cloned cattle derived from different cell types. Biol. Reprod. 66:1649-1655 https://doi.org/10.1095/biolreprod66.6.1649
  19. Moyzis, R. K, Buckingham, J. M., Cram, L. S., Dani, M., Deaven, L. L., Jones, M. D., Meyen, J., Ratliff, R. L. and Wu, J. R. 1988. A highly conserved repetitive DNA sequence, (TTAGGG)n, at the telomeres of human chromosomes. Pro Natl Acad Sci USA 85:6622-6626
  20. Nasir, L., Devlin, P., Mckevitt, T., Rutteman, G. and Argyle, D. J. 2001. Telomere lengths and telomerase activity in dog tissues: a potential model system to study human telomere and telomerase biology. Neoplasia 4:351-359
  21. Parkinson, E. K. and Minty, F. 2007. Anticancer therapy targeting telomeres and telomerase:current status. BioDrugs. 21(6):375-385 https://doi.org/10.2165/00063030-200721060-00005
  22. Pathak, S., Mutani, A. S., Furlong, C. L. and Sohn, S. H. 2002. Telomere dynamics, aneuploidy, stem cells and cancer. Int. J. Oncology 20(3):637-641
  23. Perner, S., Bruderlein, S., Hasel, C., Waibel, I., Holdenried, A., Ciloglu, N., Chopurian, H., Nielsen, K. V., Plesch, A., Hogel, J. and Moller, P. 2003. Quantifying quantitative telomere lengths of human individual chromosome arms by centromere-calibrated fluorescence in situ hybridization and digital imaging. American Journal of Pathology 163(5):1751-1756 https://doi.org/10.1016/S0002-9440(10)63534-1
  24. Robinson, M. O. 2000. Telomerase and cancer. Genet. Eng. 22:209-222
  25. Sohn, S. H., Multani, A. S., Gugnani, P. K. and Pathak, S. 2002. Telomere erosion-induced mitotic catastrophe in continuously grown Chinese hamster Don cells. Exptl. Cell Res. 279(2):271-276 https://doi.org/10.1006/excr.2002.5614
  26. Ulaner, G. A. and Giudice, L. C. 1997. Developmental regulation of telomerase activity in human fetal tissues during gestation. Mol. Hum. Reprod. 3(9):769-773 https://doi.org/10.1093/molehr/3.9.769
  27. Wright, W. E. and Shay, J. W. 2002. Historical claims and current interpretations of replicative aging. Nat Biotechnol 20:682-688 https://doi.org/10.1038/nbt0702-682
  28. 농림부. 2006. 농림통계연보. 행정간행물 31000-1023-26-01
  29. 손시환, Multani AS, Pathak S, 조은정, 하해봉. 2004. 소, 돼지 염색체의 telomeric DNA 분포 양상. 한국동물자원과학회지 46(4):547-554
  30. 정길선, 조은정, 최덕순, 이민정, 박철, 전익수, 손시환. 2006. 한국재래닭의 주령별 각 조직의 텔로미어 양적분포 양상과 텔로머레이스 활성도 분석. 한국가금학회지 33(2):97-103
  31. 조은정, 손시환. 2005. 닭의 생리적 특성에 따른 telomere 양적 변화. 2005 한국동물자원과학회 학술발표회 Proceedings II:55 전북대학교. 전주
  32. 조은정, 최철환, 손시환. 2005. 닭의 발생 단계별 세포내 telomere의 양적 분포양상과 telomerase 활성도 분석. 한국동물자원과학회지 47(2):187-194 https://doi.org/10.5187/JAST.2005.47.2.187
  33. 최덕순, 손시환. 2007. 소의 생리적 특성에 따른 세포내 텔로미어 함량과 텔로머레이스 활성도 분석. 2007 한국동물자원과학회 학술발표회 Proceedings Vol. II:64. 중앙대학교, 안성

Cited by

  1. Inheritance and Heritability of Telomere Length in Chicken vol.41, pp.3, 2014, https://doi.org/10.5536/KJPS.2014.41.3.217
  2. Dynamics of telomere length in the chicken vol.70, pp.04, 2014, https://doi.org/10.1017/S0043933914000804