Biotransformation of Liquiritin in Glycyrrhiza uralensis Fisch Extract into Liquiritigenin by Plant Crude Enzymes

식물 유래 조효소에 의한 감소 Liquiritin의 Liquiritigenin으로의 변환

  • Park, Min-Ju (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Na, In-Su (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Min, Jin-Woo (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kim, Se-Yeong (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Yang, Deok-Chun (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University)
  • 박민주 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 나인수 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 민진우 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 김세영 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 양덕춘 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행)
  • Published : 2008.04.30

Abstract

Liquiritin in licorice (Glycyrrhiza uralensis Fisch) extract was treated with three different plant crude enzymes (Prunus dulcis enzyme; PDE, P. armeniaca enzyme; PAE and P. persica enzyme; PPE) for biotransformation. The resulting product of liquiritin was analyzed by TLC and HPLC. The ${\beta}glucosidase$ activities of crude enzymes were 259.6 U/g (PDE), 407.6 U/g (PAE) and 445.8 U/g (PPE), respectively. The liquiritin was converted to liquiritigenin after 12 hours of incubation with the crude enzymes. Liquiritigenin content reached its maximum level after the treatment with PPE at $37^{\circ}C$.

감초의 에틸아세테이트 분획 중 flavonoid 지표물질인 liquiritin이 들어있는 분획 (GUE6)에 살구 및 복숭아 종자로부터 얻은 조효소액 (PDE, PAE, PPE)을 법제 처리하였다. 각 조효소액에서 ${\beta}-glucosidase$ 활성도는 아몬드 (P. dulcis) 259.6 U/g 살구 (P. persica), 복숭아 (P. persica) 조효소액의 ${\beta}-glucosidase$ 활성도가 가장 높게 관찰되었다. PDE, PAE, PPE를 이용한 발효 법제 후 liquiritigenin의 함량 비교 결과, 효소중의 ${\beta}-glucosidase$에 의해 liquiritin이 대사되어 항산화, 향군, 세포 독성 억제, 항치매, 항피부암 등 많은 약리효능을 가진 활성 물질인 liquiritigenin이 생산됨이 확인되었으며, 세효수 모두 liquiritin에 1.2배의 효소 처리 시 가장 대사가 활발한 것으로 나타나 변환을 위한 최적 농도로 결정되었다 세효소 중 특히 PPE 처리 시 liquiritin이 모두 liquiritigenin으로 변환됨으로써 liquiritin의 변환에 복숭아 종자 유래 효소가 가장 효율적인 것으로 밝혀졌다.

Keywords

References

  1. Ahn EY, Shin DH, Baek NI, Oh JA (1998) Isolation and identification of antimicrobial active substance from Glycyrrhiza uralensis FISCH. Korean J. Food Sci. Technol. 30(3):680-687
  2. Alessandra M, Antonella DL, Lernia ID, Ponzone C, Mario DR (2002) Enzymatic production of $18-{\beta}-glycyrrhetinic$ acid from Gycyrrhiza glabra L. Biotechnol. Lett. 24:1907-1911 https://doi.org/10.1023/A:1020904325906
  3. Cheng LQ, Na JR, Bang MH, Kim MK, Yang DC (2008) Conversion of major ginsenoside $Rb_1$ to 20(S)-ginsenoside $Rg_3$ by Microbacterium sp. GS514. Phytochemistry 69(1):218-224 https://doi.org/10.1016/j.phytochem.2007.06.035
  4. Cheng LQ, Na JR, Kim MK, Bang MH, Yang DC (2007) Microbial conversion of ginsenoside Rb1 to minor ginsenoside $F_2$ and gypenoside XVII by Intrasporangium sp. GS603 isolated from soil. J Microbiol Biotechnol. 17(12):1937-1943
  5. Chung WT, Lee SH, Cha MS, Sung NS, Hwang B, Lee HY (2001) Biological activities in roots of Glycyrrhiza uralensis Fisch. Korean J. Medicinal Crop Sci. 9(1):45-54
  6. Hatano T, Fukuda T, Liu Y, Noro T, Okuda T (1991) Phenolic constituents of licorice. . Correlation of phenolic constituents and licorice specimens from various source, and inhibitory effects of licorice extracts on xanthine oxidase and monoamine oxidase. Yakugaku Zasshi 111:311-321 https://doi.org/10.1248/yakushi1947.111.6_311
  7. Hatano T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 36:2090-2097 https://doi.org/10.1248/cpb.36.2090
  8. Hong MH (1972) Statistical studies on the formularies of oriental medicine (I) Prescription frequency and their origin distribution of herb drugs. Kor. J. Pharmacog. 3(2):57-64
  9. Kim DH, Kim NJ, Bae EA, Han MJ (1999) Metabolism of glycyrrhizin in polyprescriptions containing Glycyrrhizae Radix by human intestinal bacteria and their inhibitory effects on some enzymes. Kor. J. Pharmacogn. 30(3):269-274
  10. Kim MK, Lee JW, Lee KY, Yang DC (2005) Microbial conversion of major ginsenoside $Rb_1$ to pharmaceutically active minor ginsenoside Rd. J. Microbiol. 43(5):456-462
  11. Kim SC, Byun SH, Yang CH, Kim CY, Kim JW, Kim SG (2004a) Cytoprotective effects of Glycyrrhizae radix extract and its active component liquiritigenin against cadmium-induced toxicity (effects on bad translocation and cytochrome cmediated PARP cleavage). Toxicology 197:239-251 https://doi.org/10.1016/j.tox.2004.01.010
  12. Kim SI, Kim JE, So JH, Rhee IK, Chung SK, Lee KB, Yoo YC, Song KS (2004b) Changes in liquiritigenin contents in licorice extract treated by the crude enzyme extract from Aspergillus kawachii. Kor. J. Pharmacogn. 35(4):309-314
  13. Kim YG, Kim KS, Bang JK, Hong SY, Lee ST (1998) Growth characteristics, glycyrrhizin and free sugar content of Licorice Species. Korean J. Medicinal Crop Sci. 6(2):108-113
  14. Kiuchi F, Chen X, Tsuda Y (1990) Four new phenolic constituents from licorice (root of Glycyrrhiza sp.). Heterocycles 31:629-636 https://doi.org/10.3987/COM-89-5281
  15. Konoshima T, Takasaki M, Kozuka M, Inada A, Nakanishi T, Tokuda H, Matsumoto T (1989) Studies on inhibitors of skin tumor promotion (V). Inhibitory effects of flavonoids of Epstein-Barr virus activation. II. Shoyakugaku Zasshi 43:135-141
  16. Lim JD, Yu CY, Kim MJ, Yun SJ, Lee SJ, Kim NY, Chung IM (2004) Comparision of SOD activity and phenolic compound contents in various korean medicinal plants. Korean J. Medicinal Crop Sci. 12(3):191-202
  17. Na IS, Park MJ, Noh CH, Min JW, Bang MH, Yang DC (2008) Production of flavonoid aglycone from Korean Glycyrrhizae radix by biofermentation process. Korean J. Oriental Physiology & Pathology, in press
  18. Pan X, Kong LD, Zhang Y, Cheng CH, Tan RX (2000) In vitro inhibition of rat monoamine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis. Acta Pharmacologica Sinica 21:949-953
  19. Park EY, Park JS, Lee JR, Jee SY, Byun SH, Kim SC (2007) Cytoprotective effects of liquiritigenin, a component of licorice, against lead-induced cytotoxicity in PC-12 cells. Kor. J. Herbology 22(2):17-24
  20. Park SY, Bae EA, Sung JH, Lee SK, Kim DH (2001) Purification and characterization of ginsenoside $Rb_1-metabolizing$ beta-glucosidase from Fusobacterium K-60, a human intestinal anaerobic bacterium. Biosci Biotechnol Biochem. 65(5):1163-1169 https://doi.org/10.1271/bbb.65.1163
  21. Wie HJ, Zhao HL, Chang JH, Kim YS, Hwang IK, Ji GE (2007) Enzymatic modification of saponins from Platycodo grandiflon with Aspergillus niger. J. Agric. Food Chem. 55(22):8908-8913 https://doi.org/10.1021/jf0716937
  22. 김동현 (2005) 인삼과 건강. 도서출판 효일. p. 29-47
  23. 중약대사전편찬위원회 (1999) 완역 중약대사전. 도서출판 정담. p. 66-78
  24. 지현, 위혜정, 황인경, 박경래, 최은경, 지근억 (2005) 식품 발효중 기능성 물질의 생전환 및 기능성 변화. 한국식품조리과학회 학술대회지, 05 추계학술대회 및 정기총회 p. 9-14
  25. 홍남두, 김남재 (2004) 한약의 품질관리. 신일상사. p. 274