Origin and Evolution of Leucogranite of NE Yeongnam Massif from Samcheok Area, Korea

삼척지역 북동 영남 육괴에 분포하는 우백질 화강암의 기원 및 진화

  • Cheong, Won-Seok (Department of Earth & Environmental Sciences, College of natural Science, Chungbuk National University) ;
  • Na, Ki-Chang (Department of Earth & Environmental Sciences, College of natural Science, Chungbuk National University)
  • 정원석 (충북대학교 자연과학대학 지구환경과학과) ;
  • 나기창 (충북대학교 자연과학대학 지구환경과학과)
  • Published : 2008.03.30

Abstract

We study metamorphism of metasedimetary rocks and origin and evolution of leucogranite form Samcheok area, northeastern Yeongnam massif, South Korea. Metamorphic rocks in this area are composed of metasedimentary migmatite, biotite granitic gneiss and leucogranite. Metasedimentary rocks, which refer to major element feature of siliclastic sediment, are divided into two metamorphic zones based on mineral assemblages, garnet and sillimanite zones. According to petrogenetic grid of mineral assemblages, metamorhpic P-T conditions are $740{\sim}800^{\circ}C$ at $4.8{\sim}5.8\;kbar$ in the garnet zone and $640-760^{\circ}C$ at 2.5-4.5kbar in sillimanite zone. The leucogranite (Imwon leucogranite) is peraluminous granite which has high alumina index (A/CNK=1.31-1.93) and positive discriminant factor value (DF > 0). Thus, leucogranite is S-type granite generated from metasedimentary rocks. Major and trace element diagram ($R_1-R_2$ diagram and Rb vs. Y+Nb etc.) show collisional environment such as syn-collisional or volcanic arc granite. Because Rb/sr ratio (1.8-22.9) of leucogranites is higher than Sr/Ba ratio (0.21-0.79), leucogranite would be derived from muscovite dehydrate melting in metasedimentary rocks. Leucogranites have lower concentration of LREE and Eu and similar that of HREE relative to metasedimentary rocks. To examine difference of REEs between leucogranites and metasedimentary rocks, we perform modeling using volume percentage of a leucogranite and a metasedimenatry rock from study area and REE data of minerals from rhyolite (Nash and Crecraft, 1985) and melanosome of migmatite (Bea et al., 1994). Resultants of modeling indicate that LREE and HREE are controlled by monazites and garnet, respectively, although zircon is estimated HREE dominant in some leucogranite without garnet. Because there are many inclusions of accessary phases such as monazite and zircon in biotites from metasedimentary rocks. leucogranitic magma was mainly derived from muscovite-breakdown in metasedimenary rocks. Leucogranites can be subdivided into two types in compliance with Eu anomaly of chondrite nomalized REE pattern; the one of negative Eu anomaly is type I and the other is type II. Leucogranites have lower Eu concetnrations than that of metasedimenary rocks and similar that of both type. REE modeling suggest that this difference of Eu value is due to that of components of feldspars in both leucogranite and metasedimentary rock. The tendency of major ($K_2O$ and $Na_2O$) and face elements (Eu, Rb, Sr and Ba) of leucogranites also indicate that source magma of these two types was developed by anatexis experienced strong fractionation of alkali-feldspar. Conclusionally, leucogranites in this area are products of melts which was generated by muscovite-breakdown of metasedimenary rock in environment of continetal collision during high temperature/pressure metamorphism and then was fractionated and crystallized after extraction from source rock.

삼척 원덕읍에 분포하는 영남육괴 변성퇴적암류에 대한 변성작용을 판단하고 이에 따른 우백질 화강암의 기원과 진화과정을 규명하였다. 변성퇴적암류는 광물 조합에 따라 크게 석류석대와 규선석대로 나눌 수 있다. 규산질 퇴적암의 특징을 나타내는 변성퇴적암류는 암석성인격자를 바탕으로 석류석대는 $4.8{\sim}5.8\;kbar$, $740{\sim}800^{\circ}C$, 규선석대는 2.5-4.5 kbar, $640-760^{\circ}C$의 변성작용을 받았다. 이 지역에 분포하는 우백질 화강편마암류(임원 우백질화강암)는 A/CNK=1.31-1.93이고 DF(discriminant factor)>0인 과알루미늄질 화강암이다. 따라서 이는 S-type의 화강암류에 속하며 이의 기원은 주변의 변성퇴적암류이다. 주원소 및 미량원소 성분들은 우백질 화강암이 충돌대 또는 화산호 화강암 같은 대륙의 충돌 환경과 관련성을 나타낸다 우백질 화강암의 Rb/Sr의 비율(1.8-22.9)은 Sr/Ba 비율(0.21-0.79)에 비해 크기 때문에 백운모의 탈수 용융작용으로 우백질 마그마가 형성되었다. 우백질 화강암의 REE 함량은 전반적으로 변성퇴적암류보다 낮은 LREE 함량과 비슷한 HREE 함량을 갖는다. 이러한 형성 과정을 확인하기 위해 일부 변성퇴적암 및 우백질화강암 시료의 광물 함량비율과 기존 연구의 유문암 및 미그마타이트에 들어 있는 광물의 REE 함량을 이용하여 모델링을 수행했다. 이에 따르면 일부 우백질 화강암의 HREE를 저어콘이 조절했을 가능성도 보여주나, 대부분의 우백질 화강암의 LREE 조절자는 모나자이트이고 HREE 조절자는 석류석으로 판단된다 변성퇴적암에서 부수광물들 모나자이트 및 저어콘 같은 부수광물들은 주로 흑운모의 포유물로 확인되기 때문에 변성퇴적암으로부터 형성된 우백질 마그마는 주로 백운모의 붕괴 작용으로 형성된 것이다. 콘드라이트로 표준화한 REE 패턴에서 우백질 화강암은 음의 Eu 이상치를 갖는 것(Type I)과 양의 이상치를 갖는 것(Type II)로 구분할 수 있다. 우백질 화강암은 변성퇴적암류에 비해 낮은 Eu 함량을 갖으며 REE 형태와 관계없이 비슷한 Eu 함량을 갖는다. 이는 REE 모델링에서 변성퇴적암과 우백질 화강암의 장석 성분과 관련이 깊은 것으로 나타난다. 또한 주원소 ($K_2O$ and $Na_2O$) 및 미량원소(Eu, Rb, Sr, Ba) 역시 강한 알칼리 장석의 분화작용을 지시한다. 결론적으로 본 연구지역에 분포하는 우백질 화강암은 대륙충돌 환경에서 변성퇴적암류가 고온변성작용 중에 발생한 백운모 탈수 용융작용으로 발생된 용융체가 이후 분화과정을 겪어 산출된 것으로 판단된다.

Keywords

References

  1. 김용준, 이대성, 1983, 석포-덕구간에 분포하는 소위 홍제 사화강암의 지질연대와 생성과정에 대한 연구. 광산지질, 16. 163-221
  2. 김용준, 주승환, 조등룡, 1984, 삼척지역에 분포하는 우백 질 화강암류의 Rb-Sr 연령에 관한 연구. 광산지질, 17, 231-236
  3. 김정찬, 고희재, 이승렬, 이창범, 최성자, 박기화, 2001, 한 국 지질도(1:250,000), 강릉-속초도폭 및 설명서. 한국지질자원연구원, 67p
  4. 박계헌, 정창식, 이광식, 장호완, 1993, 태백산지역의 고기 화강암 및 화강편마암류에 대한 납 동위원소 연구. 지질학회지, 29, 387-395
  5. 원종관, 박병권, 이상헌, 1994, 한국지질도(1:50,000), 삼척- 고사리 도폭 및 설명서, 한국자원연구소, 21p
  6. 윤석규, 1967, 한국지질도(1:50,000), 장성 도폭 및 설명서, 국립지질조사소, 18p
  7. 이승구, 김건한, 송용선, 김남훈, 박계헌, 2007, 강원도 임 원지역 우백질 화강편마암에 나타난 희토류원소 테트라 드 효과의 지구화학적 의의. 암석학회지, 16, 27-37
  8. 이종혁, 김용준, 최병열, 1993, 한국지질도(1:50,000), 죽변- 임원진 도폭 및 설명서, 한국자원연구소, 20p
  9. 정원석, 정상원, 나기창, 2006, 삼척지역 이천화강편마암의 암석화학과 지질구조. 암석학회지, 15, 25-38
  10. 정창식, 이희권, 장병욱, 김정민, 이석훈, 임창복, 이종대, 김연중, 2001, 경북 울진 지역 단층대 단층암에 대한 연대 측정. 지질학회지, 37, 275-392
  11. 주승환, 김성재, 1985, Rb-Sr 법에 의한 영남육괴 연대측정 연구(1): 평해, 분천, 김천 화강편마암류 및 화강암류. 동력자원연구소 보고서, 130p
  12. Albarede, F., 1995, Introduction to Geochemical Modeling. Cambridge University Press, Cambridge, p. 1-543
  13. Batchelor, R. A. and Bowden, P., 1985, Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48, 43-55 https://doi.org/10.1016/0009-2541(85)90034-8
  14. Bea, F., Pereira, M.D. and Stroh, A., 1994, Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology, 117, 291-312 https://doi.org/10.1016/0009-2541(94)90133-3
  15. Berman, R.G., 1991, Thermobarometry using multiequilibrium calculation: a new technique with petrologic applications. Canadian Mineralogist, 29, 833-556
  16. Brown, M., 1994, Crustal anatexis and ascent of felsic magmas. Lithos, 32, 109-168 https://doi.org/10.1016/0024-4937(94)90024-8
  17. Castro, A., Patino Douce, A.E., Corretge, L.G., De la Rosa, J.D., El-Biad, M. and El-Hmidi, H., 1999, Origin of peraluminous granites and granodiorites, Iberian massif, Spain. An experimental test of granite petrogenesis. Contributions to Mineralogy and Petrology, 135, 255-276 https://doi.org/10.1007/s004100050511
  18. Castro, A., Corretge, L.G., El-Biad, M., El-Hmidi, H., Fernandez, C. and Patino Douce, A.E., 2000, Experimental Constraints on Hercynian Anatexis in the Iberian Massif, Spain. Journal of Petrology, 41, 1471-1488 https://doi.org/10.1093/petrology/41.10.1471
  19. Chang, H.W., Turek, A. and Kim, C.B., 2003, U-Pb zircon geochronology and Sm-Nd-Pb isotopic constraint for Precambrian plutonic rocks in the northeastern part of Ryeongnam massif, Korea. Ceochemical Journal, 37, 471-491 https://doi.org/10.2343/geochemj.37.471
  20. De la Roche, H., Leterrier, J., Grandclaude, P. and Marchal, M., 1980, A classification of volcanic and plutonic rocks using R1R2-diagram and major element analyses its relationships with current nomenclature. Chemical Geology, 29, 183-210 https://doi.org/10.1016/0009-2541(80)90020-0
  21. Ebadi, A. and Johannes, W., 1991, Beginning of melting and composition of first melts in the system Qz-Ab-Or- $H_2O-CO_2$. Contributions to Mineralogy and Petrology, 106, 286-295 https://doi.org/10.1007/BF00324558
  22. Fornelli A., Piccarreta, G., Del Moro, A. and Acquafredda, A., 2002, Multi-stage melting in the lower crust of the Serre (southern Italy). Journal of petrology, 43, 2191-2217 https://doi.org/10.1093/petrology/43.12.2191
  23. Gary S.S. and Brown, M., 2001, Petrogenesis of migmatites in Maine, USA: possible source of peraluminous leucog ranite in plutions? Journal of Petrology, 42, 789-823 https://doi.org/10.1093/petrology/42.4.789
  24. Harris, N.B.W. and Inger, S., 1992, Trace element modelling of pelitie-derived granites. Contributions to Mineralogy and Petrology, 110, 46-56 https://doi.org/10.1007/BF00310881
  25. Harris, N.B.W., Inger, S. and Massey, J., 1995, Geochemistry of granitic melts produced during the incongruent melting of muscovite: implications for the extraction of Himalayan leucogranite magmas. Journal of geophysical Research, 100, 15767-15777 https://doi.org/10.1029/94JB02623
  26. Holdaway, M.J., 1971, Stability of andalusite and the aluminium silicate phase diagrams, American Journal of Science, 271, 97-131 https://doi.org/10.2475/ajs.271.2.97
  27. Holland, T.J.B and Powell, R., 1998, An internally consistent thermodynamic data set for phases of petrological interest. Journal of metamorphic geology, 16, 309-343 https://doi.org/10.1111/j.1525-1314.1998.00140.x
  28. Holtz, F., Pichavant, M., Barbey, P. and Johannes, W., et al., 1992, Effects of $H_2O$ on liquidus phase relation in the haplogranite system at 2 and 5 kbar. American Mineralogist, 77, 1223-1241
  29. Janouek, V., Farrow, C. M. and Erban, V., 2006, Interpretation of Whole-rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47, 1255-1259 https://doi.org/10.1093/petrology/egl013
  30. Kawakami, T. and Kobayashi, T., 2006, Trace element composition and degree of partial melting of pelitic migmatites from the Aoyama area, Ryoke metamorphic belt, SW Japan: Implications for the source region of tourmaline leucogranites. Gondwana Research, 9, 176-188 https://doi.org/10.1016/j.gr.2005.06.009
  31. Kertz, R., 1983, Symbols for rock forming minerals. American Mineralogist, 68, 277-279
  32. Keskin, M., 2002, FC-modeler: a Microsoft$^{circledR}$ Excel$^{circledR}$ spreadsheet program for modeling Rayleigh fractionation vectors in closed magmatic systems. Computer & Geoscience, 28. 919-928 https://doi.org/10.1016/S0098-3004(02)00010-9
  33. Kim, J.M. and Cho, M.S, 2003, Low-pressure metamorphism and leucogranite magmatism, northeastern Yeongnam Massif, Korea: Implication for Paleoproterozoic crustal evolution. Precam. Res., 122, 235-251 https://doi.org/10.1016/S0301-9268(02)00213-9
  34. Kriegsman, L.M., 2001, Partial melting, partial melt extraction and partial back reaction in anatectic migmatites. Lithos, 56, 75-96 https://doi.org/10.1016/S0024-4937(00)00060-8
  35. Lee, S.G., Masuda, A., and Kim, H.S., 1994, An early proterozoic leuco-granitic gneiss with the REE tetrad phenomenon. Chemical Geology, 59-67
  36. Lee, S.G., Shin, S.C., Jin, M.S., Ogasawara, M. and Yang, M.K., 2005, Two Paleoproterozoic strongly peraluminous granitic plutons (Nonggeori and Naedeokri granites) at the northeastern part of Yeongnam massif, Korea: geochemical and isotopic constraints in east Asian crustal formation history. Precam. Res., 139, 101-120 https://doi.org/10.1016/j.precamres.2005.06.006
  37. Lee, S.M., Kim, H.S., and Oh, I.S., 1986, Metamorphic petrology of Precambrian gneisses in Samcheok-Jukbyeon area. J. Geol. Soc. Korea. 22, 257-277
  38. Le Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S.M.F., Upreti, B.N. and Vidal, P., 1987, Crustal generation of the Himalayan leucogranites. Tectonophysics, 134, 39-57 https://doi.org/10.1016/0040-1951(87)90248-4
  39. Mason, B. and Moore, C.B., 1982, Principles of geochemistry. Fourth edition. John Wiley & Sons, 344p
  40. Nash, W.P. and Crecraft, H.R., 1985, Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49, 2309-2322 https://doi.org/10.1016/0016-7037(85)90231-5
  41. Nabelek, P.I. and Glascock, M.D., 1995. REE-depleted leucogranites, Black Hills, South Dakota: aa consequence of disequilibrium melting of monazite-bearing schist. Journal of Petrology, 36, 1055-1071 https://doi.org/10.1093/petrology/36.4.1055
  42. Patino Douce, A.F. and Harris, N., 1998, Experimental constraints on Himalayan anatexis. Journal of Petrology, 39, 689-710 https://doi.org/10.1093/petrology/39.4.689
  43. Pattison, D.R.M. and Tracy, R.J., 1991, Phase equilibria and thermobarometry of metapelites. In Contact metamorphism. Reviews in Mineralogy. vol. 26 (ed. D.M. Kerrick), Mineralogical society of America, 105-206
  44. Pearce, J. A., Harris, N. W. and Tindle, A. G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983 https://doi.org/10.1093/petrology/25.4.956
  45. Richardson, S.W., Gilbert, M.C., and Bell, P.M., 1969, Experimental determination of the kyanite-andalusite-sillimanite equilibria; the aluminum silicate triple point. American Journal of Science, 267, 259-272 https://doi.org/10.2475/ajs.267.3.259
  46. Salje, E., 1986, Heat capacities and entropies of andalusite and sillimanite: Te influence of fibrolitization on the phase diagram of the $Al_2SiO_5 $polymorphs. American Mineralogist, 71, 1366-1371
  47. Shaw, D.M., 1956, Geochemistry of pelitic rocks. Part III: Major elements and general geochemistry. Geological Society of America Bulletin, 67, 919-934 https://doi.org/10.1130/0016-7606(1956)67[919:GOPRPI]2.0.CO;2
  48. Shaw, D.M., 1972. The origin of the Aspley Gneiss, Ontario. Canadian Journal of Earth Science, 9, 18-35 https://doi.org/10.1139/e72-002
  49. Spear, F.S. and Menard, T., 1989, Program GIBBS: A generalized Gibbs method algorithm. American Mineralogist, 74, 942-943
  50. Spear, F.S., Kohn, M.j and Cheney, J.T., 1999, P-T paths from anatectic pelites. Contributions to mineralogy and petrology, 134, 17-32 https://doi.org/10.1007/s004100050466
  51. Spicer, E.M., Stevens, G., Buick, I.S., 2004, The low-pressure partial-melting behaviour of natural boron-bearing metapelites from the Mt. Stafford area, central Australia. Contributions to Mineralogy and Petrology, 148, 160-179 https://doi.org/10.1007/s00410-004-0577-z
  52. Taylor, S.R. and McLennan, S.M., 1985, The continental crust: its composition and evolution. Oxford: Blackwell Scientivic, pp. 1-312