Preparation and Permeation Characteristics of PTMSP-PDMS-Silica/PEI Composite Membranes

PTMSP-PDMS-Silica/PEI 복합막의 제조 및 투과특성

  • Published : 2008.06.30

Abstract

In this study, PTMSP of high permeability and high molecular weight was synthesized, and PTMSP-PDMS graft copolymer was synthesized from poly [1-(trimethylsily)propyne] (PTMSP) and hydroxy-terminated poly(dimethylsiloxane) (PDMS). The PTMSP-PDMS-silica composites were prepared by the addition of 15, 30, or 50 wt% tetraethoxysilane (TEOS) to PTMSP-PDMS graft copolymer by sol-gel process. To investigate the physico-chemical characteristics of PTMSP-PDMS-silica/PEI composite membranes, the analytical methods such as $^1H$-NMR, FT-IR, TGA, XPS, GPC, and SEM have been utilized. The gas permeability and selectivity properties of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4,\;n-C_4H_{10}$, were evaluated. Permeability of the composite membranes increased as TEOS content and pressure increased. Selectivity of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4,\;and\;n-C_4H_{10}$, showed the maximum value at 30 wt% of TEOS content and decreased thereafter.

본 연구에서는 높은 투과도를 갖는 고분자량의 PTMSP를 합성하고 PTMSP와 hydroxy-terminated PDMS로부터 PTMSP-PDMS graft copolymer를 합성하였다. 그리고 PTMSP-PDMS graft copolymer에 TEOS의 함량을 15, 30, 50 wt%로 달리하여 졸-겔 방법에 의해 PTMSP-PDMS-silica 복합물을 제조하였다. PTMSP-PDMS-silica/PEI 복합막의 물리화학적 특성은 $^1H$-NMR, FT-IR, TGA, XPS, GPC, SEM 등을 사용하여 조사하였고, $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4,\;n-C_4H_{10}$ 기체에 대한 기체 투과도와 선택도 성질을 고찰하였다. 복합막의 투과도는 TEOS의 함량과 압력이 증가함에 따라 증가하였다. 그리고 기체들의 선택도는 TEOS 함량 30wt%에서 최대값을 나타내고 그 이상에서는 감소하는 경향을 나타내었다.

Keywords

References

  1. S. P. Nunes, K. V. Peinemann, K. Ohlrogge, A. Alpers, M. Keller, and A. T. N. Pires, 'Membranes of poly(ether imide) and nanodispersed silica', J. Membr. Sci., 157, 219 (1999) https://doi.org/10.1016/S0376-7388(98)00379-2
  2. C. Joly, S. Goizet, J. C. Schrotter, J. Sanchez, and M. Escoubes, 'Sol-gel polyimide-silica composite membrane : gas transport properties', J. Membr. Sci., 130, 63 (1997) https://doi.org/10.1016/S0376-7388(97)00008-2
  3. C. J. Cornelius and E. Marand, 'Hybrid silicapolyimide composite membranes : gas transport properties', J. Membr. Sci., 202, 97 (2002) https://doi.org/10.1016/S0376-7388(01)00734-7
  4. H. B. Park, J. K. Kim, S. Y. Nam, and Y. M. Lee, 'Imide-siloxane block copolymer/silica hybrid membranes: preparation, characterization and gas separation properties', J. Membr. Sci., 220, 59 (2003) https://doi.org/10.1016/S0376-7388(03)00215-1
  5. M. Moaddeb and W. J. Koros, 'Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles', J. Membr. Sci., 125, 143 (1997) https://doi.org/10.1016/S0376-7388(96)00251-7
  6. 이윤재, 염경호, '상변환/졸-겔법에 의한 $ZrO_2$ 나노입자 함유 Polyethersulfone 한외여과 막의 제조', 멤브레인, 16(4), 303 (2006)
  7. 이미선, 염경호, '$PES-TiO_2$ 복합막의 제조 및 막 특성 평가', 멤브레인, 17(3), 219 (2007)
  8. 이병성, 김대훈, 윤석원, 임현수, 문고영, 남상용, 임지원, 'PVA/PSSA-MA/TEOS 막을 이용한 물/에탄올 계의 투과증발 분리', 멤브레인, 18(1), 44 (2008)
  9. C. J. Brinker and G. W. Scherer, 'Sol-Gel Science: The physics and chemistry of sol-gel processing', Academic Press, San Diego, (Chapter 3) (1990)
  10. M. Jia, K. V. Peinemann, and R. D. Behling, 'Molecular sieving effect of the zeolite-filled silicone rubber membrane in gas separation', J. Membr. Sci., 57, 289 (1991) https://doi.org/10.1016/S0376-7388(00)80684-5
  11. J. M. Duval, B. Folkers, M. H. V. mulder, G. Desgrandchamps, and C. A. Smolders, 'Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents', J. Membr. Sci., 80, 189 (1993) https://doi.org/10.1016/0376-7388(93)85143-K
  12. Masuda, T., Isobe, E., Higashimura, T., and Takada, K., J. Am. Chem. Soc., 105, 7473 (1983) https://doi.org/10.1021/ja00363a061
  13. Nakagawa, T., Saito, T., Asakawa, S., and Saito, Y., Gas Separation & Purification, 2, 3 (1988) https://doi.org/10.1016/0950-4214(88)80035-5
  14. W. J. Koros, B. J. Story, S. M. Jordan, K. O'brien, and G. R. Husk, 'Material selection considerations for gas separation', Polym. Eng. Sci., 27(8), 603 (1987) https://doi.org/10.1002/pen.760270812
  15. T. C. Merkel, R. P. Gupta, B. S. Turk, and B. D. Freeman, 'Mixed-gas permeation of syngas components in poly(dimethylsiloxane) and poly(1-trimethylsilyl-1-propyne) at elevated temperatures', J. Membr. Sci., 191, 85 (2001) https://doi.org/10.1016/S0376-7388(01)00452-5
  16. N. A. Plate, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampol'skii, 'Gas and vapor permeation and sorption in poly(trimethylsilylpropyne)', J. Membr. Sci., 60, 13 (1991) https://doi.org/10.1016/S0376-7388(00)80321-X
  17. I. Pinnau and L. G. Toy, 'Transport of organic vapors through poly(1-trimethylsilyl-1-propyne)', J. Membr. Sci., 116, 199 (1996) https://doi.org/10.1016/S0376-7388(99)00261-6
  18. M. Yoshikawa, M. Kishida, M. Tanigaki, and W. Eguchi, 'Novel liquid membrane transport system for tryptophan', J. Membr. Sci., 47, 53 (1989) https://doi.org/10.1016/S0376-7388(00)80859-5
  19. K. Nagai, A. Higuchi, and T. Nakagawa, 'Bromination and Gas Permeability of Poly(1-trimethylsilyl-1-propyne) Membrane', J. Appl. Polym. Sci., 54, 1207 (1994) https://doi.org/10.1002/app.1994.070540903
  20. L. Starannikova, V. Khodzhaeva, and Yu. Yampolskii, 'Mechanism of aging of poly1-(trimethylsilyl)-1-propyne and its effect on gas permeability', J. Membr. Sci., 244, 183 (2004) https://doi.org/10.1016/j.memsci.2004.06.051
  21. T. Nakagawa, S. Fujisaki, H. Nakano, and A. Higuchi, J. Membr. Sci., 94, 183 (1994) https://doi.org/10.1016/0376-7388(93)E0169-K
  22. Yu Nagase, Tomoko Ueda, Kiyohide Matsui, and Masaki Uchikura, 'Chemical Modification of Poly (substituted-acetylene). I. Synthesis and Gas Permeability of Poly(1-trimethylsilyl-1-propyne)/ Poly (dimethylsiloxane) Graft Copolymer', J. Polym. Sci.: Part B: Polym. Physics, 29, 171 (1991) https://doi.org/10.1002/polb.1991.090290204
  23. Se-Lyung Hong and Tae-Bum Kang, 'Separation of $H_2/N_2$ gas mixture by PTMSP/PDMS-PEI composite membrane', Membran Journal, 16(2), 123 (2006)
  24. Shen-He Zhong, Chuan-Feng Li, and Xiu-Fen Xiao, 'Preparation and characterization of polyimide-silica hybrid membranes on kieselguhrmullite supports', J. Membr. Sci., 199, 53 (2002) https://doi.org/10.1016/S0376-7388(01)00676-7
  25. T. C. Merkel, V. Bondar, K. Nagai, and B. D. Freeman, 'Sorption and Transport of Hydrocarbon and Perfluorocarbon Gases in Poly(1-trimethylsilyl-1-propyne)', J. Polym. Sci.: Part B: Polym. Physics, 38, 273 (2000) https://doi.org/10.1002/(SICI)1099-0488(20000115)38:2<273::AID-POLB1>3.0.CO;2-X
  26. T. C. Merkel, Z. He, I. Pinnau, B. D. Freeman, P. Meakin, and A. J. Hill, 'Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne)', Macromolecules, 36, 6844 (2003) https://doi.org/10.1021/ma0341566
  27. V. T. Stannett, In Diffusion in Polymers, Crank, J., Park, G. S., Eds., Academic Press, New York, 41 (1968)
  28. Z. He, I. Pinnau, and A. Morisato, 'Nanostructured poly(4-methyl-2-pentyne)/silica hybrid membranes for gas separation', Desalination, 146, 11 (2002) https://doi.org/10.1016/S0011-9164(02)00463-0
  29. W. J. Koros and M. W. Hellums, In Encyclopedia of Polymer Science and Technology, Kroschwitz, 1211 (1990)
  30. T. Masuda, E. Isobe, and T. Higashimura, 'Polymerization of -(trimethylsilyl)-1-propyne by halides of niobium (V) and tantalum (V) and polymer properties', Macromolecules, 18, 841 (1985) https://doi.org/10.1021/ma00147a003