Quality and Antioxidative Characteristics of Cudrania tricuspidata Leaves Tea

꾸지뽕잎차의 품질 및 항산화 특성에 관한 연구

  • Park, Bum-Ho (Department of Food Science and Technology, Food Industrial Technology, Catholic University of Daegu) ;
  • Back, Kyung-Yern (Department of Food Science and Technology, Food Industrial Technology, Catholic University of Daegu) ;
  • Lee, Sang-Il (Department of Food Nutrition and Culinary, Keimyung College) ;
  • Kim, Soon-Dong (Department of Food Science and Technology, Food Industrial Technology, Catholic University of Daegu)
  • 박범호 (대구가톨릭 대학교 식품산업학부 식품공학) ;
  • 백경연 (대구가톨릭 대학교 식품산업학부 식품공학) ;
  • 이상일 (계명문화대학 식품영양조리과) ;
  • 김순동 (대구가톨릭 대학교 식품산업학부 식품공학)
  • Published : 2008.06.30

Abstract

To obtain basic da1a on the preparation of Cudrania tricuspidata leaves tea, the quality and anti-oxidative characteristics of dried raw leaves (RT), pan-fired leaves tea (PT) and fermented leaves tea (FT) were investigated. General characteristics of RT, PT and FT, respectively, were: moisture content 18.47, 6.23 and 8.50%; crude protein content 17.77, 20.46 and 19.13%; and carbohydrate content 54.42, 62.52 and 61.96%. The crude lipid and ash contents were in the range 0.05 - 0.07% and 9.27 -10.74% respectively; the water soluble solid content was in the order FT > PT > RT and ranged from 23.10 - 37.38%; there were no significant differences in the total polyphenol content (815.24 - 835.16 mg%). Although $L^*$ values of PT (20.94) and FT (20.85) were lower than those of RT (34.71), the $a^*$ value in PT and the $b^*$ value in FT were highest. In all ethanol extracts the reducing power, electron-donating ability and superoxide dismutase (SOD)-like activity increased in a concentration-dependent manner. Furthermore, the activity in FT was higher than in PT or RT. The total free amino-acid content was higher in FT (1429.93 mg%) than RT (1108.94 mg%) or PT (833.13 mg%). The major amino acids were L-asparagine and L-valine in RT, L-cysteine and L-glutamic acid in PT and L-proline in FT. In a sensory evaluation of PT and FT, bitter and astringent tastes were decreased relative to RT, while sweet and savory tastes, flavor, color and overall acceptability were increased. These results indicate that FT bas a higher antioxidant effect and free-amino-acid content than PT, while the sensory quality of FT is similar to that of PT.

꾸지뽕잎차 제조의 기초적 자료를 마련하기 위하여 건조생잎(RT), 덖음차(PT) 및 발효차(F)의 품질특성을 비교하였다. 수분함량은 RT 18.47%, PT 및 FT는 각각 6.23% 및 8.50%였다. 조단백질 함량은 RT 17.77%, PT 20.46%, FT 19.13%였으며 조지방 함량은 $0.05{\sim}0.07%$, 회분함량은 $9.27{\sim}10.74%$, 탄수화물함량은 RT 54.42%, PT 62.52%, FT 61.96%였다. 수용성 고형물의 함량은 FT>PT>RT순으로 $23.10{\sim}37.38%$였으며 total rolyphenol 함량은 $815.24{\sim}835.16\;mg%$로 유의적인 차이가 없었다. $L^*$값은 RT 34.71, PT 20.94, FT 20.85로 PT 및 FT에서 낮았으며, $a^*$값은 PT에서 $b^*$값은 RT에서 높았다. 모든 추ethanol 추출물에서 농도가 증가할수록 환원력, 전자공여능 및 superoxide dismutase유사활성이 증가하였으며 FT의 경우가 PT및 RT에 비하여 높았다. 총유리아미노산 함량은 FT(1429.93 mg/100 g)>RT(1108.94 mg/100 g)>PT(833.13 mg/100 g)순 이였으며, 주요 유리 아미노산은 RT에서는 L-asparagine, L-valine, PT에서는 L-cystine, L-glutamic acid, FT에서 는 L-proline이 였다. 관능검사 결과 PT와 FT는 RT에서 나타나는 쓴맛과 떫은맛이 감소되었으며 단맛, 구수한 맛이 향상되었고 풍미, 색상 및 종합적 기호도가 향상되었다. 이상의 실험결과, 덖음꾸지뽕잎차와 발효꾸지뽕잎차는 맛, 풍미, 기호도 등 관능적 품질은 상호 대등한 반면 덖음차보다 발효차에서 항산화활성이 높고 유리아미노산의 함량이 높아 품질면에서 우수한 것으로 평가되었다.

Keywords

References

  1. Song, U.I. (2000) Illustrated Book of Medical Plants. Medical Plant Experiment Station of Agricultural Research Center in Gyeongbuk, Dongamunhwasa, Seoul, p. 120
  2. Chae, J.Y., Lee, J.Y., Hoang, I.S., Whangbo, D., Choi, P.W., Lee, W.C., Kim, J.W., Kim, S.Y., Choi, S.W. and Rhee, S.J. (2003) Analysis of functional components of leaves of different mulberry cultivars. J. Korean Soc. Food Sci. Nutr., 32, 15-21 https://doi.org/10.3746/jkfn.2003.32.1.015
  3. Jeon, I.J. (2004) Antioxidative components of mulberry(Cudrania tricuspidata) leaves. MS thesis, Chungang University, Korea
  4. Cha, J.Y., Kim, H.J., Chung, C.H. and Cho, Y.S. (1999) Antioxidative activities and contents of polyphenolic compounds of Cudrania tricuspidata. J. Kor. Soc. Food Sci. Nutr., 28, 1310-1315
  5. Kimura, M., Chen, F., Nakashima, N., Kimura, I., Asano, N. and Koya, S. (1995) Antihyperglycemic effect of N-containing sugars derived from mulberry leaves in streptozotocin induced diabetic mice. J. Trad. Med., 12, 214-219
  6. Cho, B.L. (2004) Chemical components of mulberry tea and application for food processing. MS thesis, Jinju National University, Korea
  7. Kondo, Y. (1957) Trace constituents of mulberry leaves. Nippon. Sanshigaku. Zasshi., 26, 349-352
  8. Kim, M.S., Choue, R.W., Chung, S.H. and Koo, S.J. (1998) Blood glucose lowering effects of mulberry leaves and silkworm extracts on mice fed with high carbohydrate diet. Kor. J. Nutr., 31, 117-121
  9. Kim, S.Y., Lee, W.C., Kim, H.B., Kim, A.J. and Kim, S.K. (1998) Anti- hyperlipidemic effects of methanol extracts from mulberry leaves in cholesterol induced hyperlipidemia in rats. J. Korean Soc. Food Sci. Nutr., 27, 1217-1222
  10. oi, K., Kojima, T. and Fujimoto, Y. (2000) Mulberry leaf extract inhibits the oxidative modification of rabbit and human low density lipoprotein. Biol. Pharm. Bull., 23, 1066-1071 https://doi.org/10.1248/bpb.23.1066
  11. Ottersen, T., Vance, B., Doorenbos, N.J., Chang, B.L. and El-Feraly, F.S. (1977) The crystal structure of cudranone, 2,6,3'-trihydroxy-4-methoxy-2'-(3-methyl- 2-butenyl)-I, a new antimicrobial agent from Cudrania chochinchinensis. Acta. Chem. Scand. Ser. B., 31, 434-436
  12. Cha, J.Y., Kim, H.J. and Cho, Y.S. (2000) Effect of water extract of leaves from Morus alba and Cudraia tricuspidata on the lipid concentration of serum and liver in rat. J. Kor. Soc. Agric. Chem. Biotechnol., 43, 303-308
  13. Kang, D.G., Hur, T.Y., Lee, G.M., Oh, H.C., Kwon, T.O., Sohn, E.J. and Lee, H.S. (2002) Effects of Cudrania tricuspidata water extract on blood pressure and renal functions in No-dependent hypertension. Life Sci., 70, 2599-2609 https://doi.org/10.1016/S0024-3205(02)01547-3
  14. Lee, I.K., Kim, C.J., Song, K.S., Kim, H.M., Koshino, H., Uramoto, M. and Yoo, I.D. (1996) Cytotoxic benzyldihydroflavonols from Cudrania tricuspidata. Phytochem., 41, 213-216 https://doi.org/10.1016/0031-9422(95)00609-5
  15. Choi, O.J. and Choi, K.H. (2003) The physicochemical properties of Korean wild teas (green tea, semi fermented tea, and black tea) according to degree of fermentation. J. Korean Soc. Food Sci. Nutr., 32, 356-362 https://doi.org/10.3746/jkfn.2003.32.3.356
  16. Choi, O.J., Rhee, H.J. and Choi, K.H. (2005) Antimicrobial activity of korean wild tea extract according to the degree of fermentation. J. Korean Soc. Food Sci. Nutr., 34, 148-157 https://doi.org/10.3746/jkfn.2005.34.2.148
  17. Park, J.H., Kim, Y.O., Jung, J.M. and Seo, J.B. (2006) Effect on quality of pan-fired green tea at different pan-firing conditions. J. Bio-Env. Con., 15, 90-95
  18. AOAC. Official Methods Analysis. 14th ed. Association of Official Analytical Chemists. Washington DC (1984)
  19. Dewanto, V., Wu, X., Adom, K.K. and Liu, R.H. (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem., 50, 3010-3014 https://doi.org/10.1021/jf0115589
  20. Saeedeh, A.D. and Asna, U. (2007) Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chem., 102, 1233-1240 https://doi.org/10.1016/j.foodchem.2006.07.013
  21. Blios, M.S. (1958) Antioxidant determination by the use of a stable free radical. Nature, 26, 1199-1200
  22. Marklund, S. and Marklund, G. (1974) Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47, 468-474
  23. Meilgaard, M., Civille, G.V. and Carr, B.T. (1987) Sensory Evaluation Technique. CRC Press, Inc., Boca Ratonm Florida, USA. p. 39-112
  24. Choi, O.J. and Choi, K.H. (2003) The physicochemical properties of Korean wild teas (green tea, semi fermented tea, and black tea) according to degree of fermentation. J. Korean Soc. Food Sci. Nutr., 32, 356-362 https://doi.org/10.3746/jkfn.2003.32.3.356
  25. Jo, K.H., Pae, Y.R., Yang, E.J., Park, E.J., Ma, S.J., Park, Y.S., Chung, D.O. and Jung, S.T. (2006) Major constituents and bioactivities of tea products by various manufacturing. Kor. J. Food Preserv., 13, 596-602
  26. Hwang, K.A., Kim, K.S., Park, C.S. and Shin, S.R. (2003) Changes on the characteristics of Lindera obtusiloba BL. leaf teas by manufacturing process. Kor. J. Food Nutr., 16, 365-371
  27. Shihoko, T., Yumie, M., Toshio, M., Yusuke, S. and Kazuo, I. (1987) Comparison of caffeine and catechin components in infusion of various tea(green tea, ooling and black tea) and tea drinks. Nippon Shokuhin Kogyo Gakkaishi, 34, 20-27 https://doi.org/10.3136/nskkk1962.34.20
  28. Yamamoto, M., Sano, M., Matsuda, N., Miyase, T., Kawamoto, K., Suzuki, N., Yoshimura, M., Tachibana, H. and Hakamata, K. (2001) The change of epigallocatechin-3-O-(3-O-methyl) gallate content in tea of different varieties, tea of crop and processing method. Nippon Shokuhin Kagaku Kaishi, 48, 64-68 https://doi.org/10.3136/nskkk.48.64
  29. Weisburger, J.H. (1999) Tea and health: the underlying mechanisms. Proc. Soc. Exp. Biol. Med., 220, 217-275
  30. Son, G.M., Bae, S.M., Chung, J.Y., Shin, D.J. and Sung, T.S. (2005) Antioxidative effect on the green tea and puer tea extracts. Kor. J. Food & Nutr., 18, 219-224
  31. Benzie, I.F.F. and Szeto, Y.T. (1999) Total antioxidant capacity of teas by the ferric reducing antioxidant power assay. J. Agric. Food Chem., 47, 633-636 https://doi.org/10.1021/jf9807768
  32. Zhu, Q.Y., Hackman, R.M., Ensunsa, J.L., Holt, R.R. and Keen, C.L. (2002) Antioxidative activities of oolong tea. J. Agric. Food Chem., 50, 6929-6934 https://doi.org/10.1021/jf0206163
  33. Aoshima, H., Tsunoue, H., Koda, H. and Kiso, Y. (2004) Aging of whiskey increases 1,1-diphenyl-2-picrylhydrazl radical scavenging activity. J. Agric. Food Chem., 52, 5240-5244 https://doi.org/10.1021/jf049817s
  34. Kim, H.K., Kim, Y.E., Do, J.R., Lee, Y.C. and Lee, B.Y. (1995) Antioxidative activity and physiological activity of some Korean medicinal plants. Korean J. Food Sci. Technol., 27, 80-85
  35. Kang, Y.H., Park, Y.K. and Lee, G.D. (1996) The nitrite scavenging and electron donating ability of phenolic compounds. Korean J. Food Sci. Technol., 28, 232-239
  36. Shin, S.R., Hong, J.Y., Nam, H.S., Yoon, K.Y. and Kim, K.S. (2006) Antioxidative effects of extracts of Korean herbal materials. J. Kor. Soc. Food Sci. Nutr., 35, 187-191 https://doi.org/10.3746/jkfn.2006.35.2.187
  37. Yeo, S.G., Ahn, C.W., Lee, Y.W., Lee, T.G., Park, Y.H. and Kim, S.B. (1995) Antioxidative effect of tea extracts from green tea, oolong tea and black tea. J. Korean Soc. Food Nutr., 24, 299-304
  38. Ra, K.S., Suh, H.J., Chung, S.H. and Son, J.Y. (1997) Antioxidative activity of solvent extract onion skin. Korean J. Food Sci. Technol., 29, 595-600
  39. Song, E.S., Park, S.J., Woo, N.R.A., Won, M.H., Choi, J.S., Kim, J.G. and Kang, M.H. (2005) Antioxidant capacity of colored barley extracts by varieties. J. Kor. Soc. Food Sci. Nutr., 34, 1491-1497 https://doi.org/10.3746/jkfn.2005.34.10.1491
  40. Cho, B.L. (2004) Chemical components of mulberry tea and application for food processing. MS thesis, Jinju National University, Korea
  41. Chung, Y.H. and Shin, M.K. (2005) A study on the physicochemical properties of Korean teas according to degree of fermentation. Kor. J. Food Nutr., 18, 94-101