DOI QR코드

DOI QR Code

Model Optimization for Sea Surface Wind Simulation of Strong Wind Cases

강풍 사례의 해상풍 모의를 위한 모형의 최적화

  • Heo, Ki-Young (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Jeong-Wook (Division of Earth Environmental System, Pusan National University) ;
  • Ha, Kyung-Ja (Division of Earth Environmental System, Pusan National University) ;
  • Jun, Ki-Cheon (Coastal Engineering Research Division, Korea Ocean Research and Development Institute) ;
  • Park, Kwang-Soon (Coastal Engineering Research Division, Korea Ocean Research and Development Institute)
  • 허기영 (부산대학교 지구환경시스템학부) ;
  • 이정욱 (부산대학교 지구환경시스템학부) ;
  • 하경자 (부산대학교 지구환경시스템학부) ;
  • 전기천 (한국해양연구원 연안방재연구사업단) ;
  • 박광순 (한국해양연구원 연안방재연구사업단)
  • Published : 2008.06.30

Abstract

This study is concerned with the optimization of models using MM5 and WRF mesoscale numerical models to simulate strong sea surface winds, such as that of typhoon Shanshan on 17 September 2006, and the Siberian high event on 16 December 2006, which were selected for displaying the two highest mean wind speeds. The model optimizations for the lowest level altitude, physical parameters and horizontal resolution were all examined. The sea surface wind values obtained using a logarithmic function which takes into account low-level stability and surface roughness were more accurate than those obtained by adjusting the lowest-level of the model to 10 m linearly. To find the optimal parameters for simulating strong sea surface winds various physical parameters were combined and applied to the model. Model grid resolutions of 3-km produced better results than those of 9-km in terms of displaying accurately regions of strong wind, low pressure intensities and low pressure mesoscale structures.

이 연구에서는 2006년 9월 17일의 태풍 산산과 2006년 12월 16일의 시베리아 고기압 확장에 의한 강풍 사례에 대하여 MM5와 WRF 중규모 수치 모형을 이용한 실험을 통해 강한 해상풍을 모의하기 위한 모형의 최적화가 조사되었다. 모형의 최적화는 모형의 최하층 고도, 물리 모수화, 모형 해상도에 대해 조사되었으며, 결과를 요약하면 다음과 같다. 1) 두 사례 모두 최하층 연직 고도를 해상풍 관측 고도인 10m가지 선형적으로 내리는 것보다 대기 하층의 안정도와 해수면 거칠기를 고려하여 로가리듬의 함수로 변환하는 것이 더 정확한 모의를 하였다. 2) 강한 해상풍 모의를 위한 최적의 모수화 방안을 찾기 위해, 여러 물리 모수화 방안을 조합하여 모형에 적용하였다. 3) 3-km의 고분해능의 모형 결과가 9-km 분해능의 모형 결과에 비해 강풍 지역과 저기압의 강도와 같은 저기압의 중규모 구조를 잘 나타내었다.

Keywords

References

  1. 김규명, 강인식, 1992, 해상풍 산출 모형과 역학. 한국기상학회지, 28, 1-8
  2. 김맹기, 강인식, 1995, 한반도 주변 해상에서의 바람의 응력, 현열속, 잠열속에 대한 진단적 모델링. 한국기상학회지, 31, 1-13
  3. 서장원, 장유순, 2003, 중규모 기상모델(MM5/KMA)과 3세대 파랑모델(WAVE WATCH-O)로 계산된 한반도 주변 해역의 2002년 월평균 해상풍과 파랑 분포 특성. 한국해양학회지, 8, 262-273
  4. Betts, A.K., 1986, A new convective adjustment scheme. Part I: Observational and theoretical basis. Quarterly Journal of the Royal Meteorological Society, 112, 677-691
  5. Betts, A.K. and Miller, M.J., 1986, A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quarterly Journal of the Royal Meteorological Society, 112, 693-709
  6. Blackadar, A.K., 1962, The vertical distribution of wind and turbulent exchange in a neutral atmosphere. Journal of geophysical research, 67, 3095-3102 https://doi.org/10.1029/JZ067i008p03095
  7. Braun, S.A. and Tao, W.-K., 2000, Sensitivity of high-resolution simulation of Hurricane Bob (1991) to planetary boundary layer parameterizations. Monthly Weather Review, 128, 3941-3961 https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2
  8. Burk, S.D. and Thompson, W.T., 1989, A vertically nested regional numerical weather prediction model with second- order closure physics. Monthly Weather Review, 117, 2305-2324 https://doi.org/10.1175/1520-0493(1989)117<2305:AVNRNW>2.0.CO;2
  9. Cairns, M.M. and Corey, J., 2003, Mesoscale model simulations of high-wind events in the complex terrain of Western Nevada. Weather and Forecasting, 18, 249-263 https://doi.org/10.1175/1520-0434(2003)018<0249:MMSOHE>2.0.CO;2
  10. Deardorff, J.W., 1972, Parameterization of the planetary boundary layer for use in general circulation models. Monthly Weather Review, 100, 93-106 https://doi.org/10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2
  11. Danard, M., 1988, A diagnostic method for computing the surface wind from the geostrophic wind including the effects of baroclinicity. Monthly Weather Review, 116, 2712-2716 https://doi.org/10.1175/1520-0493(1988)116<2712:ADMFCT>2.0.CO;2
  12. Dudhia, J., 1989, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of Atmospheric Sciences, 46, 3077-3107 https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  13. Dudhia, J., 1996, A multi-layer soil temperature model for MM5. Preprints, The sixth PSU/ NCAR Mesoscale Model User's Workshop, 49-50
  14. Grell, G.A., Dudhia, J., and Stauffer, D.R., 1994, A description of the fifth-generation Penn State-NCAR Mesoscale Model (MM5). National Center for Atmospheric Research, Boulder, Colorado, USA, 122 p
  15. Hong, S.-Y. and Pan, H.-L., 1996, Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review, 124, 2322-2339 https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
  16. Hoxit, L.R., 1974, Planetary boundary layer winds in baroclinic conditions. Journal of Atmospheric Sciences, 46, 3077-3107 https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  17. Janjic, Z.I., 1990, The step-mountain coordinate: Physical package. Monthly Weather Review, 118, 1429-1443 https://doi.org/10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2
  18. Janjic, Z.I., 1994, The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122, 927-945 https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
  19. Kain, J.S. and Fritsch, J.M., 1993, A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization. Journal of Atmospheric Sciences, 23, 2784-2802
  20. Mellor, G.L. and Yamada, T., 1982, Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 20, 851-875 https://doi.org/10.1029/RG020i004p00851
  21. Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., and Clough, S.A., 1997, Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-K model for the longwave. Journal of Geophysical Research, 102(D14), 16663-16682 https://doi.org/10.1029/97JD00237
  22. Shim, J.-K. and Hong, S.-Y., 2006, A study on the sensitivity of the simulations of Typhoon Saomai (2000) to the cumulus parameterization and planetary boundary layer schemes in MM5. Journal of the Korean Meteorological Society, 42, 75-85
  23. Skamarock, W.C., 2004, Evaluating mesoscale NWP models using kinetic energy spectra. Monthly Weather Review, 132, 3019-3032 https://doi.org/10.1175/MWR2830.1
  24. Srinivas, C.V., Venkatesan, R., and Singh, A.B., 2007a, Sensitivity of mesoscale simulations of land-sea breeze to boundary layer turbulence parameterization. Atmospheric Environment, 41, 2534-2548 https://doi.org/10.1016/j.atmosenv.2006.11.027
  25. Srinivas, C.V., Venkatesan, R., Rao, D.V., and Hari Prasad, D., 2007b, Numerical Simulation of Andhra Severe Cyclone (2003): Model Sensitivity to the Boundary Layer and Convection Parameterization. Pure and Applied Geophysics, 164, 1465-1487 https://doi.org/10.1007/s00024-007-0228-1
  26. Wang, Y., Kepert, J.D., and Holland, G.J., 2001, The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Monthly Weather Review, 129, 2481-2500 https://doi.org/10.1175/1520-0493(2001)129<2481:TEOSSE>2.0.CO;2
  27. Wentz, F.J., Smith, D.K., Mears, C.A., and Gentemann, C.L., 2001, Advanced algorithms For QuikSCAT and SeaWinds/AMSR. Proceedings of IEEE 2001 International Geoscience and Remote Sensing Symposium, 9- 13 July 2001, Sydney, Australia

Cited by

  1. Simulation of atmospheric states for a storm surge on the west coast of Korea: model comparison between MM5, WRF and COAMPS vol.51, pp.1, 2009, https://doi.org/10.1007/s11069-009-9395-y
  2. The Characteristics in the Simulation of High-resolution Coastal Weather Using the WRF and SWAN Models vol.23, pp.3, 2014, https://doi.org/10.5322/JESI.2014.23.3.409
  3. Characteristics of Meteorological Variables in the Leeward Side associated with the Downslope Windstorm over the Yeongdong Region vol.36, pp.4, 2015, https://doi.org/10.5467/JKESS.2015.36.4.315