Inhibitory Effects of the Seeds of Cornus officinalis on AGEs Formation and AGEs-induced Protein Cross-linking

산수유 씨의 최종당화산물의 형성 및 교차결합에 미치는 효과

  • Kim, Chan-Sik (Department of Herbal Pharmaceutical Development, Korea Institute of Oriental Medicine) ;
  • Jang, Dae-Sik (Department of Herbal Pharmaceutical Development, Korea Institute of Oriental Medicine) ;
  • Kim, Jung-Hyun (Department of Herbal Pharmaceutical Development, Korea Institute of Oriental Medicine) ;
  • Lee, Ga-Young (Department of Herbal Pharmaceutical Development, Korea Institute of Oriental Medicine) ;
  • Lee, Yun-Mi (Department of Herbal Pharmaceutical Development, Korea Institute of Oriental Medicine) ;
  • Kim, Young-Sook (Department of Herbal Pharmaceutical Development, Korea Institute of Oriental Medicine) ;
  • Kim, Jin-Sook (Department of Herbal Pharmaceutical Development, Korea Institute of Oriental Medicine)
  • 김찬식 (한국한의학연구원 한약제제연구부) ;
  • 장대식 (한국한의학연구원 한약제제연구부) ;
  • 김정현 (한국한의학연구원 한약제제연구부) ;
  • 이가영 (한국한의학연구원 한약제제연구부) ;
  • 이윤미 (한국한의학연구원 한약제제연구부) ;
  • 김영숙 (한국한의학연구원 한약제제연구부) ;
  • 김진숙 (한국한의학연구원 한약제제연구부)
  • Published : 2008.09.30

Abstract

An 80% EtOH extract and the solvent fractions of the seeds of Cornus officinalis were evaluated for their inhibitory activities against advanced glycation end products (AGEs) formation and AGEs-induced protein cross-linking in vitro. In vitro assay for AGEs-bovine serum albumin (BSA) formation showed that the 80% EtOH extract, n-hexane, EtOAc, n-BuOH and water fractions significantly inhibited AGEs formation with observed $IC_{50}$ values of 1.13, 17.64, 1.52, 1.24 and $3.27{\mu}g/ml$, respectively. In indirect AGEs-ELISA assay, the 800% EtOH extract, EtOAc and n-BuOH fractions exhibited more potent inhibitory activity on AGEs-BSA formation than aminoguanidine, a well know AGEs inhibitor. Furthermore, the 80% EtOH extract and all the solvent fractions inhibited concentration-dependently AGE-BSA cross-linking to collagen. The 80% EtOH extract, EtOAc, n-BuOH and water fractions also had a breaking activity against preformed AGE-BSA cross-linking concentration dependently. Thus these results suggest that the 80% EtOH extract and fractions of the seeds of C. officinalis could be an inhibitor as well as breaker of AGE-BSA cross-linking.

Keywords

References

  1. Bucala, R., Cerami, A., Vlassara, H. (1995) Advanced glycosylation end products in diabetic complications. Diabetes Rev. 3: 258-268
  2. Brownlee, M. (1996) Advanced glycation endproducts in diabetic complications. Curr. Opin. Endocrinol. Diabetes 3: 291-297 https://doi.org/10.1097/00060793-199608000-00003
  3. Edelstein, D. and Brownlee, M. (1992) Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes 41: 26-29 https://doi.org/10.2337/diabetes.41.1.26
  4. Bierhaus, A., Hofmann M.A., Ziegler R, Nawroth P. (1998) AGEs and their interaction with AGE-receptors in. vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Re0s. 37: 586-600 https://doi.org/10.1016/S0008-6363(97)00233-2
  5. Rahbar, S., Figarola, J.L., (2003) Novel inhibitors of advanced glycation endproducts. Arch. Biochem. Biophys. 419: 63-79 https://doi.org/10.1016/j.abb.2003.08.009
  6. Wolffenbuttel, B.H., Boulanger, C.M., Crijns, F.R., Huijberts, M.S., Poitevin, P., Swennen, G.N., Vasan, S., Egan, J.J., Ulrich, P., Cerami, A., Levy, B.I. (1998). Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc. Natl. Acad. Sci. 95: 4630-4634 https://doi.org/10.1073/pnas.95.8.4630
  7. Oldfield, M.D., Bach, L. A., Forbes, J.M., Nikolic-Paterson, D., McRobert, A., Thalla, V., Atkins, R.C., Oscika, T., Jerums, G., Cooper, M.E. (2001) Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RACE). J. Clin. Invest. 108: 1853-1863 https://doi.org/10.1172/JCI11951
  8. Sakurai, T. and S. Tsuchiya. (1988) Superoxide production from nonenzymatically glycated protein. FEBS Lett. 236: 406-410 https://doi.org/10.1016/0014-5793(88)80066-8
  9. Forbes, J. M., Cooper, M. E., Oldfield, M. D., and Thomas, M. C. (2003) Role of Advanced Glycation End Products in Diabetic Nephropathy. J. Am. Soc. Nephrol. 14: S254-258 https://doi.org/10.1097/01.ASN.0000077413.41276.17
  10. Corns, C.M. (2003) Herbal remedies and clinical biochemistry. Ann. Clin. Biochem. 40: 489-507 https://doi.org/10.1258/000456303322326407
  11. Tapsell, L.C., Hemphill, I., Cobiac, L., Patch, C.S., Sullivan, D.R., Fenech, M., Roodenrys, S., Keogh, J.B., Clifton, P.M., Williams, P.G., Fazio, V.A., Inge, K.E. (2006) Health benefits of herbs and spices: the past, the present, the future. Med. J. Aust. 185: S4-24
  12. Kim, O.K., (2005) Antidiabetic and antioxidative effects of Corni fructus in streptozotocin-induced diabetic rats. J. Kor. Oil. Chem. Soc. 22: 157-167
  13. Yamahara, J., Mibu, H., Sawada, T., Fujimura, H., Takino, S. (1981) Antidiabetic principles of Corni fructus experimental diabetes induced by streptozotocin. Yakugaku. Zasshi. 101: 86-90 https://doi.org/10.1248/yakushi1947.101.1_86
  14. Park, Y.K., Whang, W.K., Kin, H.I. (1995) The antidiabetic effects of extract from Cornus officinalis seed. Chung-Ang. J. Pharm. Sci. 9: 5-11
  15. Vinson, J.A. and Howard III, T.B. (1996) Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J. Nutr. Biochem. 7, 659-663 https://doi.org/10.1016/S0955-2863(96)00128-3
  16. Forbes, J.M., Soulis, T., Thallas, V., Panagiotopoulos, S., Long, D.M., Vasan, S., Wagle, D., Jerums, G., Cooper, M.E. (2001) Renoprotective effects of a novel inhibitor of advanced glycation. Diabetologia. 44: 108-114 https://doi.org/10.1007/s001250051587
  17. Vasan, S., Zhang, X., Kapurniotu, A., Bernhagen, J., Teichberg, S., Basgen, J., Wagle, D., Shih, D., Terlecky, I., Bucala, R., Cerami, A., Egan, J., Ulrich, P. (1996) An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature. 382:275-278 https://doi.org/10.1038/382275a0
  18. Morris, R.D., Rimm, D.L., Hartz, A.J., Kalkhoff, R.K., Rimm, A.A. (1989) Obesity and heredity in the etiology of non-insulin-dependent diabetes mellitus in 32,662 adult white women. Am J Epidemiol. 130: 112-21 https://doi.org/10.1093/oxfordjournals.aje.a115302
  19. Dillman, W.H. (1980) Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes. 29: 579-582 https://doi.org/10.2337/diab.29.7.579
  20. Lee, H.C., Kim, S.J., Kim, S.S., Shin, H.C., Yoon, J.W. (2000) Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue. Nature. 408: 483-488 https://doi.org/10.1038/35044106
  21. Yamabe N., Kang K. S., Goto E., Tanaka T., Yokozawa T. (2007) Beneficial Effect of Corni Fructus, a Constituent of Hachimi-jio-gan, on Advanced Glycation End-product-Mediated Renal Injury in Streptozotocin-Treated Diabetic Rats. Biol. Pharm. Bull. 30: 520-526 https://doi.org/10.1248/bpb.30.520
  22. Kim, Y.D., Kim, H-K., Kim, K.J. (2003) Analysis of Nutritional Components of Cornus officianalis. J. Korean Soc. Food Sci. Nutr. 32: 785-789 https://doi.org/10.3746/jkfn.2003.32.6.785
  23. Yokozawa, T., Nakagawa, T., Terasawa, K. (2001) Effects of Oriental medicines on the production of advanced glycation endproducts. J. Trad. Med. 18: 107-112
  24. Nakagawa, T., Yokozawa, T., Terasawa, K. (2001) A study of Kampo medicines in a diabetic nephropathy model. J. Trad. Med. 18: 161-168