DOI QR코드

DOI QR Code

Effect of Climate Change and Urbanization on Flow and BOD Concentration Duration Curves

기후변화 및 도시화에 따른 유황곡선 및 BOD 농도지속곡선 변화

  • Park, Kyung-Shin (Hyundai Development Company) ;
  • Chung, Eun-Sung (Seoul National University, Engineering Research Institute) ;
  • Kim, Sang-Ug (National Assembly Research Service, Land, Transport and Maritime Affairs Team) ;
  • Lee, Kil-Seong (Seoul National University, Civil and Environmental Engineering)
  • 박경신 ((주) 현대산업개발 사원) ;
  • 정은성 (서울대학교 공학연구소) ;
  • 김상욱 (국회입법조사처 국토해양팀) ;
  • 이길성 (서울대학교 공과대학 건설환경공학부)
  • Published : 2009.12.31

Abstract

This study developed an integrated approach to climate change and urbanization impact assessment by linking models of SDSM (statistical downscaling model), HSPF (hydrological simulation program?Fortran) and ICM (impervious cover model). A case study of the Anyangcheon watershed illustrated how the proposed framework can be used to analyze the impacts of climate change and urbanization in terms of flood control, water security and water quality. The evaluation criteria were the variations of flow and pollutant concentration duration curves. In this study, nine scenarios including three climate (present condition, A1B and A2) and three urbanization scenarios were analyzed using HSPF model. As a result, climate change is a large influence on the flowrate and the urbanization affects the pollutant concentration. Therefore, the impacts of both climate change and urbanization must be included into the watershed management and water resources planning for sustainable development.

본 연구는 기후변화와 토지이용 변화로 인한 물순환 영향을 분석하기 위해 통계학적 축소모형(SDSM), 연속유출모형인 HSPF 모형, 불투수면 모형을 결합하는 통합접근법을 제시하였다. 이러한 기법을 안양천 유역에 적용하여 치수, 이수, 수질관리 측면에서 기후변화와 토지이용변화에 대한 영향을 분석하였다. 평가 기준은 유황곡선과 오염물질 농도 지속곡선이며 기후변화 시나리오 3개 (현재, A1B, A2)와 토지이용변화 3개, 총 9개의 시나리오에 대해 HSPF 모형을 이용하여 분석하였다. 그 결과 기후변화는 유출량에 대한 영향력이 크고 토지이용변화는 농도 변화에 크게 영향을 미치는 것으로 나타났다. 따라서 지속가능한 유역관리, 수자원관리를 위해 도시화와 기후변화에 대한 영향을 동시에 고려하는 것이 바람직하다.

Keywords

References

  1. 김경태, 정은성, 김상욱, 이길성, 성진영 (2009). “우리나라 오염총량관리제도의 개선 및 적용: 1. 안양천 유역의 오염부하량 산정.” 수질보전 한국물환경학회지, 한국물환경학회, 제25권, 제6호, pp. 972-978
  2. 김병식, 김형수, 서병하, 김남원 (2004). “기후변화가 용담댐 유역의 유출에 미치는 영향.” 한국수자원학회논문집, 한국수자원학회, 제37권, 제2호, pp. 185-193 https://doi.org/10.3741/JKWRA.2004.37.3.185
  3. 김병식, 서병하, 김남원 (2003). “전이함수모형과 일기발생모형을 이용한 유역규모 기후변화시나리오의 작성.” 한국수자원학회논문집, 한국수자원학회, 제36권, 제3호, pp. 345-363
  4. 김웅태, 이동률, 유철상 (2004). “기후변화에 따른 대청댐 유역의 유출 영향 분석.” 한국수자원학회논문집, 한국수자원학회, 제37권, 제4호, pp. 305-314 https://doi.org/10.3741/JKWRA.2004.37.4.305
  5. 배덕효, 정일원, 권원태 (2007). “수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(I): 유역별 기후시나리오 구축.” 한국수자원학회논문집, 한국수자원학회, 제40권, 제3호, pp. 191-204 https://doi.org/10.3741/JKWRA.2007.40.3.191
  6. 신사철 (2000). “기후변화 시나리오에 의한 하천 유황의 해석.” 한국수자원학회논문집, 한국수자원학회, 제33권, 제5호, pp. 623-634
  7. 안소라, 이용준, 박근애, 김성준 (2008). “미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석.” 대한토목학회논문집, 대한토목학회, 제28권, 제2B호, pp. 215-224
  8. 안소라, 박민지, 박근애, 김성준 (2009). “기후변화가 경안천 유역의 수문요소에 미치는 영향 평가.” 한국수자원학회논문집, 한국수자원학회, 제42권, 제1호, pp. 33-50 https://doi.org/10.3741/JKWRA.2009.42.1.33
  9. 이길성, 정은성, 신문주 (2006). “기후, 지하수 취수 및 토지이용 변화의 건기 총유출량에 대한 영향.” 한국수자원학회논문집, 한국수자원학회, 제39권, 제11호, pp. 923-934 https://doi.org/10.3741/JKWRA.2006.39.11.923
  10. 임혁진, 권형중, 배덕효, 김성준 (2006). “CA-Markov 기법을 이용한 기후변화에 따른 소양강댐 유역의 수문분석.” 한국수자원학회논문집, 한국수자원학회, 제39권, 제5호, pp. 453-466 https://doi.org/10.3741/JKWRA.2006.39.5.453
  11. 정상만, 서형덕, 김형수, 한규하 (2008). “기후인자의 변화에 따른 대청댐유역의 유출민감도 모의평가.” 한국수자원학회논문집, 한국수자원학회, 제41권, 제11호, pp. 1095-1106 https://doi.org/10.3741/JKWRA.2008.41.11.1095
  12. 정은성, 이준석, 이길성, 김상욱, 김경태 (2007). “HSPF 모형을 이용한 안양천 유역의 물순환 건전화 대안기술 효과분석.” 수질보전 한국물환경학회지, 한국물환경학회, 제23권, 제6호, pp. 973-984
  13. 정은성, 김경태, 김상욱, 이길성 (2008). “하천유지유량을 이용한 일최대 오염허용부하량 산정 방안.” 수질보전 한국물환경학회지, 한국물환경학회, 제24권, 제3호, pp. 325-335
  14. 정일원, 배덕효, 임은순 (2007). “수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(II): 유역별 유출시나리오 구축.” 한국수자원학회논문집, 한국수자원학회, 제40권, 제3호, pp. 205-214 https://doi.org/10.3741/JKWRA.2007.40.3.205
  15. 한국환경정책평가연구원 (2007). 수계별 유역의 불투수율조사 및 저감방안 연구. 국립환경과학원 한강물환경연구소
  16. Asselman, N.E., Middelkoop, H., and van Dijk, P.M. (2003). “The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the River Rhine.” Hydrological Processes, Vol. 17, pp. 3225-3244 https://doi.org/10.1002/hyp.1384
  17. Bicknell, B.R., Imhoff, J.C., Kittle, J.L. Jr., Jobes, T.H., and Donigian, A.S. Jr. (2001). Hydrologic Simulation Program Fortran (HSPF) User's Manual for Version 12. U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA
  18. Bronstert, A., Niehoff, D., and Burger, G. (2002). “Effects of climate and land-use change on storm runoff generation: Present knowledge and modeling capabilities.” Hydrological Processes, Vol. 16, pp. 509-529 https://doi.org/10.1002/hyp.326
  19. Cameron, D. (2006). “An application of the UKCIP02 climate change scenarios to flood estimation by continuous simulation for a gauged catchment in the Northeast of Scotland, UK (with Uncertainty).” Journal of Hydrology, Vol. 328, pp. 212-226 https://doi.org/10.1016/j.jhydrol.2005.12.024
  20. Center for Watershed Protection (2005). Urban Subwatershed Restoration Manual Series: 1. An Integrated Framework to Restore Small Urban Watersheds Version 2.0. Center for Watershed Protection, Ellicott City, MD
  21. Chang, H. (2003). “Basin hydrologic response to changes in climate and land use: The Conestoga River basin, Pennsylvania.” Physical Geography, Vol. 24, pp. 222-247 https://doi.org/10.2747/0272-3646.24.3.222
  22. Cuo, L., Lettenmaier, D.P., Alberti, M., and Richey, J.E. (2009). “Effects of a century of land cover and climate change on the hydrology of the Puget Sound basin.” Hydrological Processes, Vol. 23, pp. 907-933 https://doi.org/10.1002/hyp.7228
  23. Ewen, J., and Paarkin, G. (1996). “Validation of catchment models for predicting land-use and climate change impacts.” Journal of Hydrology, Vol. 175, pp. 583-594 https://doi.org/10.1016/S0022-1694(96)80026-6
  24. Hay, L.E., McCabe, G.J., Wolock, D.M., and Ayers, M.A. (1991). “Simulation of precipitation by weather type analysis.” Water Resources Research, Vol. 27, No. 4, pp. 493-501 https://doi.org/10.1029/90WR02650
  25. Hejazi, M., and Moglen, G.E. (2008). “The effect of climate and land use change on flow duration in the Maryland Piedmont region.” Hydrological Processes, Vol. 22, pp. 4710-4722 https://doi.org/10.1002/hyp.7080
  26. Juckem, P.F., Hunt, R.J., Anderson, M.P., and Robertson, D.M. (2008). “Effects of climate and land management change on streamflow in the driftless area of Wisconsin.” Journal of Hydrology, Vol. 355, pp. 123-130 https://doi.org/10.1016/j.jhydrol.2008.03.010
  27. Kite, G.W., Dalton, A., and Dion, K. (1994). “Simulation of streamflow in a macro-scale watershed using GCM Data.” Water Resources Research, Vol. 30, No. 5, pp. 1546-1559 https://doi.org/10.1029/94WR00231
  28. Kojiri, T., Hamaguchi, T., and Ode, M. (2008). “Assessment of global warming impacts on water resources and ecology of a river basin in Japan.” Journal of Hydro-environment Research, Vol. 1, pp. 164-175 https://doi.org/10.1016/j.jher.2008.01.002
  29. Kuhl, S.C., and Miller, J.R. (1992). “Seasonal river runoff calculated from a global atmospheric model.” Water Resources Research, Vol. 28, No. 8, pp. 2029-2039 https://doi.org/10.1029/92WR00917
  30. Leander, R., Buishand, T.A., Hurk, B.J.J.M., and Wit, M.J.M. (2008). “Estimated changes in flood quantiles of the River Meuse from resampling of regional climate model output.” Journal of Hydrology, Vol. 351, pp. 331-343 https://doi.org/10.1016/j.jhydrol.2007.12.020
  31. Lee, K.S., and Chung, E.S. (2007). “Hydrological effects of climate change, groundwater withdrawal, and landuse in the small Korea watershed.” Hydrological Processes, Vol. 21, No. 22, pp. 3046- 3056 https://doi.org/10.1002/hyp.6513
  32. Legesse, D., Vallet-Coulomb, C., and Gasse, F. (2003). “Hydrological response of a catchment to climate and land use changes in Tropical Africa: Case study South Central Ethiopia.” Journal of Hydrology, Vol. 275, pp. 63-85 https://doi.org/10.1016/S0022-1694(03)00019-2
  33. Li, Z., Liu, W., Zhang, X., and Zheng, F. (2009). “Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China.” Journal of Hydrology (on-line published)
  34. Ma, X., Xu, J., Luo, Y., Aggarwal, S.P., and Li, J. (2009). “Response of hydrological processes to land-cover and climate changes in Kejie watershed, south-west China.” Hydrological Processes, Vol. 23, pp. 1179-1191 https://doi.org/10.1002/hyp.7233
  35. Nash, J.E., and Sutcliffe, J.V. (1970). “River flow forecasting through conceptual models, part 1 - A discussion of principles.” Journal of Hydrology, Vol. 10, No. 3, pp. 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  36. Pitman, A.J., and Chiew, F.H. (1996). “Testing a GCM land surface scheme against catchment-scale runoff data.” Climate Dynamics, Vol. 17, pp. 182-190 https://doi.org/10.1007/s003820050136
  37. Sefton, C.E.M., and Boorman, D.B. (1997). “A regional investigation of climate change impacts on UK streamflows.” Journal of Hydrology, Vol. 195, pp. 26-44 https://doi.org/10.1016/S0022-1694(96)03257-X
  38. Semadeni-Davies, A., Hernebring, C., Svensson, G., and Gustafsson, L. (2008). “The impact of climate change and urbanisation on drainage in Helsingborg, Sweden: Suburban stormwater.” Journal of Hydrology, Vol. 350, pp. 114-125 https://doi.org/10.1016/j.jhydrol.2007.11.006
  39. Schueler, T. (1994) “The importance of imperviousness.” Watershed Protection Techniques, Vol. 1, No. 3, pp. 100-111
  40. Solecki, W.D., and Oliveri, C. (2004). “Downscaling climate change scenarios in an urban landuse change model.” Journal of Environmental Management, Vol. 72, pp. 105-115 https://doi.org/10.1016/j.jenvman.2004.03.014
  41. Stahl, K., Moore, R.D., Shea, J.M., Hutchinson, D., and Cannon, A.J. (2008). “Coupled modelling of glacier and streamflow response to future climate scenarios.” Water Resources Research, Vol. 44, No. 2, W02422 https://doi.org/10.1029/2007WR005956
  42. Wang, S., Kang, S., Zhang, L., and Li, F. (2008). “Modelling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China.” Hydrological Processes, Vol. 22, pp. 2502-2510 https://doi.org/10.1002/hyp.6846
  43. Wilby, R.L. (1994). “Stochastic Weather Type Simulation for Regional Climate Change Impact Assessment.” Water Resources Research, Vol. 30, No. 12, pp. 3395-3403 https://doi.org/10.1029/94WR01840
  44. Wilby, R.L., Dawson, C.W., Barrow, E.M. (2002). “SDSM - A decision support tool for the assessment of regional climate change impacts.” Environmental and Modelling Software, Vol. 17, pp. 145-157 https://doi.org/10.1016/S1364-8152(01)00060-3

Cited by

  1. Hydrologic and Environmental Assessment of an Infiltration Planter for Roof Runoff Use vol.17, pp.4, 2015, https://doi.org/10.17663/JWR.2015.17.4.325