DOI QR코드

DOI QR Code

Effectiveness Analysis of Alternatives for Water Resources Management Considering Climate Change and Urbanization

기후변화 및 도시화를 고려한 수자원관리 대안의 효과 분석

  • Park, Kyung-Shin (Hyundai Development Company) ;
  • Chung, Eun-Sung (Seoul National University, Engineering Research Institute) ;
  • Kim, Sang-Ug (National Assembly Research Service, Land, Transport and Maritime Affairs Team) ;
  • Lee, Kil-Seong (Seoul National University, Civil and Environmental Engineering)
  • 박경신 ((주) 현대산업개발) ;
  • 정은성 (서울대학교 공학연구소) ;
  • 김상욱 (국회입법조사처 국토해양팀) ;
  • 이길성 (서울대학교 공과대학 건설환경공학부)
  • Published : 2009.12.31

Abstract

This study derived the analysis results of alternatives for integrated watershed management under urbanization and climate change scenarios. Climate change and urbanization scenarios were obtained by using SDSM (Statistical Downscaling Method) model and ICM (Impervious Cover Model), respectively. Alternatives for the Anyangcheon watershed are reuse of wastewater treatment plant effluent, and redevelopment of existing reservoir. Flow and BOD concentration duration curves were derived by using HSPF (Hydrological Simulation Program - Fortran) model. As a result, low flow ($Q_{99},\;Q_{95},\;Q_{90}$) and BOD concentration ($Q_{10},\;Q_5,\;Q_1$) were very sensitive to the alternatives comparing to high flow($C_{30},\;C_{10},\;C_1$). Although urbanization makes the hydrological cycle distorted, effective alternatives can reduce its damage. The numbers of days to satisfy the instreamflow requirements and target water quality were also sensitive to urbanization. This result showed that the climate change and urbanization should be considered in the water resources/watershed and environmental planning.

본 연구에서는 도시화와 기후변화에 대한 미래시나리오를 구성하고 각각의 시나리오별로 수자원 관리 대안들에 대한 효과분석을 수행하였다. 기후변화 시나리오는 SDSM (Statiatical Downscaling Method) 모형을 이용하여 구축하였으며 도시화는 불투수면 모형(Impervious cover model, ICM)을 이용하였다. 안양천 유역에 대해 하수처리수 재이용, 저수지 재개발 대안들을 유황곡선(flow duration curve)과 BOD 농도지속곡선(concentration duration curve)의 변화측면에서 연속유출모형인 HSPF (Hydrological Simulation Program - Fortran) 모형을 이용하여 분석하였다. 그 결과, 시나리오별 하천 유출량에 대한 대안 효과의 차이가 고수량 ($Q_{10},\;Q_5,\;Q_1$)에 비해 저수량($Q_{99},\;Q_{95},\;Q_{90}$)과, 수질오염($C_{30},\;C_{10},\;C_1$) 측면에서 크게 나타남을 알 수 있다. 즉 도시화는 물 순환을 크게 악화시키나 대안의 적용이 이러한 현상을 크게 막아줌을 알 수 있다. 또한 목표 유지유량 및 목표 수질 만족일수는 도시화에 대해 매우 민감한 것으로 나타났다. 따라서 향후 수자원 관리 대안을 수립할 때 기후변화와 도시화에 대한 분석을 포함시키는 것이 바람직하다.

Keywords

References

  1. 박경신, 정은성, 김상욱, 이길성 (2009). “기후변화 및 도시화에 따른 유황곡선 및 BOD 농도지속곡선 변화.” 한국수자원학회 논문집, 한국수자원학회, 제42권, 제12호, pp. 1091-1102 https://doi.org/10.3741/JKWRA.2009.42.12.1091
  2. 안소라, 이용준, 박근애, 김성준 (2008). “미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석.” 대한토목학회논문집, 대한토목학회, 제28권, 제2B호, pp. 215-224
  3. 이길성, 정은성, 신문주, 김영오 (2006). “도시유역의 건천화 방지를 위한 지속가능한 수자원 계획: 2. 적용.” 한국수자원학회논문집, 한국수자원학회, 제39권, 제11호, pp. 947-960 https://doi.org/10.3741/JKWRA.2006.39.11.947
  4. 이길성, 진락선, 이상호, 이정민 (2005). “PCSWMM을 이용한 건천화 방지를 위한 유지용수 공급 방안 (II) 모형의 적용.” 대한토목학회논문집, 대한토목학회, 제25권, 제6B호, 437-441
  5. Asselman, N.E., Middelkoop, H., and van Dijk, P.M. (2003). “The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the River Rhine.” Hydrological Processes, Vol. 17, pp. 3225-3244 https://doi.org/10.1002/hyp.1384
  6. Bicknell, B.R., Imhoff, J.C., Kittle, J.L. Jr., Jobes, T.H., and Donigian, A.S. Jr. (2001). Hydrologic Simulation Program Fortran (HSPF) User's Manual for Version 12. U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA
  7. Bronstert, A., Niehoff, D., and Burger, G. (2002). “Effects of climate and land-use change on storm runoff generation: Present knowledge and modeling capabilities.” Hydrological Processes, Vol. 16, pp. 509-529 https://doi.org/10.1002/hyp.326
  8. Center for Watershed Protection (2005) Urban Subwatershed Restoration Manual Series: 1. An Integrated Framework to Restore Small Urban Watersheds Version 2.0. Center for Watershed Protection, Ellicott City, MD
  9. Chang, H. (2003). “Basin hydrologic response to changes in climate and land use: The Conestoga River basin, Pennsylvania.” Physical Geography, Vol. 24, pp. 222-247 https://doi.org/10.2747/0272-3646.24.3.222
  10. Cuo, L., Lettenmaier, D.P., Alberti, M., and Richey, J.E. (2009). “Effects of a century of land cover and climate change on the hydrology of the Puget Sound basin.” Hydrological Processes, Vol. 23, pp. 907-933 https://doi.org/10.1002/hyp.7228
  11. Ewen, J., and Paarkin, G. (1996). Validation of catchment models for predicting land-use and climate change impacts. Journal of Hydrology, Vol. 175, pp. 583-594 https://doi.org/10.1016/S0022-1694(96)80026-6
  12. Hejazi, M., and Moglen, G.E. (2008). “The effect of climate and land use change on flow duration in the Maryland Piedmont region.” Hydrological Processes, Vol. 22, pp. 4710-4722 https://doi.org/10.1002/hyp.7080
  13. Juckem, P.F., Hunt, R.J., Anderson, M.P., and Robertson, D.M. (2008). “Effects of climate and land management change on streamflow in the driftless area of Wisconsin.” Journal of Hydrology, Vol. 355, pp. 123-130 https://doi.org/10.1016/j.jhydrol.2008.03.010
  14. Legesse, D., Vallet-Coulomb, C., and Gasse, F. (2003). “Hydrological response of a catchment to climate and land use changes in Tropical Africa: Case study South Central Ethiopia.” Journal of Hydrology, Vol. 275, pp. 63-85 https://doi.org/10.1016/S0022-1694(03)00019-2
  15. Lee, K.S., and Chung, E.S. (2007). “Hydrological effects of climate change, groundwater withdrawal, and landuse in the small Korea watershed.” Hydrological Processes, Vol. 21, pp. 3046-3056 https://doi.org/10.1002/hyp.6513
  16. Li, Z., Liu, W., Zhang, X., and Zheng, F. (2009). “Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China.” Journal of Hydrology (on-line published)
  17. Ma, X., Xu, J., Luo, Y., Aggarwal, S.P., and Li, J. (2009). “Response of hydrological processes to land-cover and climate changes in Kejie watershed, south-west China.” Hydrological Processes, Vol. 23, pp. 1179-1191 https://doi.org/10.1002/hyp.7233
  18. Semadeni-Davies, A., Hernebring, C., Svensson, G., and Gustafsson, L. (2008). “The impact of climate change and urbanisation on drainage in Helsingborg, Sweden: Suburban stormwater.” Journal of Hydrology, Vol. 350, pp. 114-125 https://doi.org/10.1016/j.jhydrol.2007.11.006
  19. Sulis, M., Marrocu, M., and Paniconi, C. (2009). “Conjunctive use of a hydrological model and a multicriteria decision support system for a case study on the Caia Catchment, Portugal.” Journal of Hydrologic Engineering, Vol. 14, No. 2, pp. 141-152 https://doi.org/10.1061/(ASCE)1084-0699(2009)14:2(141)
  20. Wang, S., Kang, S., Zhang, L., and Li, F. (2008). “Modelling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China.” Hydrological Processes, Vol. 22, pp. 2502-2510 https://doi.org/10.1002/hyp.6846
  21. Wilby, R.L., Dawson, C.W., Barrow, E.M. (2002). “SDSM - A decision support tool for the assessment of regional climate change impacts.” Environmental and Modelling Software, Vol. 17, pp. 145-157 https://doi.org/10.1016/S1364-8152(01)00060-3