DOI QR코드

DOI QR Code

Comparison of chrysanthemum cultivars based on direct shoot regeneration rates in tissue culture

  • Han, Bong-Hee (Floriculture Research Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Su-Young (Floriculture Research Division, National Institute of Horticultural & Herbal Science) ;
  • Park, Byoung-Mo (Dept. of Environment Landscape Architecture Design, College of Environmental Bioresource Sciences, Chonbuk National University)
  • Published : 2009.09.30

Abstract

Direct shoot regeneration from leaf or internode or petiole segments was conducted in 33 cultivars of chrysanthemum. Shoot regeneration rates varied according to cultivars, culture media, and explant types. The high shoot regeneration rate of more than 70% in 15 cultivars (‘Pink Pangpang’, ‘Orange Memory’, ‘Relance’, ‘Zinba’, ‘Beakma’, ‘Innocence’, ‘Sunny Pangpang’, ‘Euro Yellow’, ‘Dublin’, ‘Boramae’, ‘Peak’, ‘Euro White’, ‘Vesuvio White’, ‘Linneker Salmon’ and ‘Pink Pride’) and 2 ones (‘Forward’ and ‘Agason’) was obtained from the segments of leaves and internodes, respectively, cultured on MS medium containing 1.0 mg-$L^{-1}$ BAP, 0.5 mg-$L^{-1}$ IAA and 30 g-$L^{-1}$ sucrose. That in 6 cultivars (‘Shuhonochikara’, ‘Hakunosen’, ‘Whitney Pangpang’, ‘Plaisir D’Amour’, ‘Grace’ and ‘Kumsu’) was observed from the segments of leaves or internodes cultured on 1/2 MS medium 1.0 mg-$L^{-1}$ BAP, 0.5 mg-$L^{-1}$ IAA and 15 g-$L^{-1}$ sucrose In case of 3 cultivars (‘Ilweol’, ‘Puma White’ and ‘Sharon’), when internode explants excised from mother plants, which were pre-cultured on MS medium containing 2 g-$L^{-1}$ activated charcoal and 30 g-$L^{-1}$ sucrose for two months in the dark, and cultured on MS medium containing 1.0 mg-$L^{-1}$ BAP, 0.5 mg-$L^{-1}$ IAA and 30 g-$L^{-1}$ sucrose, that was shown. Seven cultivars including ‘Puma Yellow’, ‘Argus’, ‘Yes Morning’, ‘Whiparam’, ‘Hakunohikari’, ‘Charming Eye’ and ‘Moon light’ requires more improved culture conditions. Tissues with the highest shoot regeneration rate were in descending order, leaf, petiole, and internode segments.

Keywords

References

  1. Ahn YJ, Vang L, McKeon TA (2007) High-frequency plant regeneration through adventitious shoot formation in castor (Ricinus communis L.). In Vitro Cell & Dev Biol-Plant, 43:9-15 https://doi.org/10.1007/s11627-006-9009-2
  2. Aida R, Nagaya S, Yoshoda K, Kishimoto S, Shibata M, Ohmiya A (2005) Efficient transgene expression in chrysanthemum, Chrysanthemum morifloum Ramat., with the promoter of a gene for tobacco elongation factor 1 $\alpha$ protein. Japan Agr Res Qua 39:269-274 https://doi.org/10.6090/jarq.39.269
  3. Annadana S, Rademaker W, Ramanna M, Udayakumar M, de Jong J (2000) Response of stem explants to screening and explant source as a basic for methodical advancing of regeneration protocols for chrysanthemum. Plant Cell Tiss Org Cult 62:47-55 https://doi.org/10.1023/A:1006483414260
  4. Aswath CR, Mo SY, Kim SH, Kim DW (2004) IbMADS4 regulated the vegetative shoot development in transgenic chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura. Plant Sci 166:847-854 https://doi.org/10.1016/j.plantsci.2003.11.030
  5. Chung KM, Park YD (2005) Development of an Agrobacteriummediated transformation system for regenerating garland chrysanthemum (Crysanthemum coronarium L.). J Plant Biol 48:136-141 https://doi.org/10.1007/BF03030573
  6. De Jong J, Mertens MMJ, Rademaker W (1994) Stable expression of the GUS reporter gene in chrysanthemum depends on binary plasmid T-DNA. Plant Cell Rep 14:59-64 https://doi.org/10.1007/BF00233300
  7. Faisal M, Siddique I, Anis M. (2006) In vitro rapid regeneration of plantlets from nodal explants of Mucana pruriens - a valuable medicinal plant. Ann Appl Biol 148:1-6 https://doi.org/10.1111/j.1744-7348.2005.00034.x
  8. Fukai S, De Jong J, Rademaker W (1995) Efficient genetic transformation of chrysanthemum [Dendranthem grandiflorum (Ramat.) Kitamura] using stem segments. Breeding Sci 45:179-184
  9. Han BH, Shu EJ, Lee SY, Shin HK, Lim YP (2007) Selection of non- branching lines introducing Ls-like cDNA into chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) “Shuho-no-chikara”. Sci Hort 115:70-75 https://doi.org/10.1016/j.scienta.2007.07.012
  10. Han BH, Yae BW, Goo DH, Yu HJ (2004) Micropropagation of Philodendron wend-imbe through adventitious multi-bud cluster formation. Korean J Plant Biotechnol 31:115-119 https://doi.org/10.5010/JPB.2004.31.2.115
  11. John MS, Moyer WJ, Margaret ED (1998) A regeneration and Agrobacterium-mediated transformation system for genetically diverse chrysanthemum cultivars. J Amer Soc Hort Sci 123:189-194
  12. Kudo S, Shibata N, Kanno Y, Suzuki M (2002) Transformation of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) via Agrobacterium tumefaciens. Acta Hort 572:139-147
  13. Kubo T, Tsuro M, Tsukimori A, Shizukawa Y, Takemoto T, Inaba K, Shiozaki S (2006) Morphological and physiological changes in transgenic Chrysanthemum morifolium Ramat. “Oguranishiki” with rolC. J Japan Soc Hort Sci 75:312-317 https://doi.org/10.2503/jjshs.75.312
  14. Ledger SE, Deroles SC, Given NK (1991) Regeneration and agrobacterium mediated transformation of chrysanthemum. Plant Cell Rep 10:195-199 https://doi.org/10.1007/BF00234294
  15. Mitiouchkina TY, Dolgov SV (2000) Modification of chrysanthemum plant and flower architecture by rolC gene from Agrobacterium rhizogenes induction. Acta Hort 508:163-169
  16. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  17. Renou JP, Brochard P, Jalouzot R (1993) Recovery of transgenic chrysanthemum (Dendranthema grandifora Tzvelev) after hygromycin resistance selection. Plant Sci 89:185-197 https://doi.org/10.1016/0168-9452(93)90127-L
  18. Saito K, Yamazaki M, Murakoshi I (1992) Transgenic medical plants: Agrobacterium-mediated foreign gene transfer and production of secondary metabolites. J Natural Products 55:149-162 https://doi.org/10.1021/np50080a001
  19. Schnapp SR, Preece JE (1986) In vitro growth reduction of tomato and carnation microplants. Plant Cell Tiss Organ Cult 6:3-8 https://doi.org/10.1007/BF00037752
  20. Sherman JM, Moyer JW, Daub ME (1998) A regeneration and Agrobacterium-mediated transformation system for genetically diverse chrysanthemum cultivars. J Amer Soc Hort Sci 123:189-194
  21. Takatsu Y, Nishizawa Y, Hibi T, Akutsu T (1999) Transgenic chrysanthemum [Dendranthema grandiflorum (Ramat.) Kitamura] expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci Hort 82 :113-123 https://doi.org/10.1016/S0304-4238(99)00034-5
  22. Takatsu Y, Tomotsune H, Kasumi M, Sakuma F (1998) Differences in adventitious shoot regeneration capacity among Japanese chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura) cultivars and the improved protocol for Agrobacteriummediated genetic transformation. J Japan Soc Hort Sci 67: 958-964
  23. Teixeira da Silva JA (2004) Ornamental chrysanthemums: improvement by biotechnology. Plant Cell Tiss Organ Cult 79:1-18 https://doi.org/10.1023/B:TICU.0000049444.67329.b9

Cited by

  1. The Effects of Plant Growth Regulators on Plant Regeneration and Direct Shoots Formation of Petal Explants of Chrysanthemum Flower Color Mutants Varieties, 'ARTI-purple' and 'ARTI-queen' vol.31, pp.3, 2013, https://doi.org/10.7235/hort.2013.12219
  2. FT-transgenic spray-type Chrysanthemum (Dendranthema grandiflorum Kitamura) showing early-flowering vol.39, pp.3, 2012, https://doi.org/10.5010/JPB.2012.39.3.140
  3. The Selection of Domestically Bred Cultivars for Spray-type Chrysanthemum Transformation vol.33, pp.6, 2015, https://doi.org/10.7235/hort.2015.15017
  4. Sodium nitroprusside stimulates growth and shoot regeneration in chrysanthemum vol.58, pp.1, 2017, https://doi.org/10.1007/s13580-017-0070-z