DOI QR코드

DOI QR Code

Inhibitory Effects of Ethanol Extracts from Pine Buds (Pinus densiflora) on Angiotensin Converting Enzyme, Xanthine Oxidase and Nitric Oxide Synthesis

소나무 새순 에탄올 추출물의 angiotensin converting enzyme, xanthine oxidase 및 nitrix oxide synthase 활성

  • 조은경 (신라대학교, 바이오식품소재학과) ;
  • 송효주 (신라대학교, 식품영양학과) ;
  • 조혜은 (신라대학교, 식품영양학과) ;
  • 김미향 (신라대학교, 식품영양학과) ;
  • 최인순 (신라대학교, 생물과학과) ;
  • 최영주 (신라대학교, 식품영양학과)
  • Published : 2009.11.30

Abstract

Pine trees (Pinus densiflora Sieb. et Zacc.) have been used as a traditional health-promoting medicinal food in Korea. This research was performed to determine the antioxidative and antibacterial activities, tyrosinase, nitric oxide synthesis, angiotensin converting enzyme (ACE), and xanthine oxidase inhibition effects of the pine bud ethanol extract (PBE). Antioxidative activities of PBE were measured by using 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging activity and superoxide dismutase-like activity (SODA). DPPH radical scavenging and SOD-like activities of PBE were remarkably increased in a dose-dependent manner, and were about 88.9% and 47.9% at 1 mg/ml and 10 mg/ml, respectively. The xanthine oxidase and angiotensin converting enzyme activities were inhibited about 71.9% and 60.8% at 1 mg/ml and $100{\mu}g/ml$ of PBE, respectively. The tyrosinase inhibitory activities of PBE were slightly increased in a dose-dependent manner. The PBE showed strong antimicrobial activities on Escherichia coli (E. coli) and Vibrio paraheamolyticus. Stimulation of the macrophages RAW264.7 cells with lipopolysaccharide (LPS) resulted in increased production of nitric oxide (NO) in the medium. However, NO synthesis was reduced up to 54% by addition of PBE at $200{\mu}g/ml$. These results revealed that pine buds have a strong antioxidative and anti-inflammatory activity, and exhibit angiotensin converting enzyme and xanthine oxidase inhibitory activities. This suggests that pine buds have the greatest property as a source for natural health products.

본 연구에서는 솔순의 기능성에 관한 연구를 위하여 에탄올 추출물로 여러 가지 생리활성과 아질산염 소거작용에 대하여 분석하였다. 우선, 솔순의 항산화 활성을 측정하기 위하여 DPPH, SOD 유사활성, XO 저해활성을 측정하였다. 그 결과 DPPH법을 통해 측정한 솔순의 항산화력은 1 mg/ml에서 88.9%의 radical 소거능을 나타내었으며, 동량의 BHA와 비교했을 때 유사한 항산화력이 측정되었다. 이것은 솔잎보다 항산화 활성이 높은 것으로 솔순의 항산화력에 관한 높은 이용가치를 의미한다. SOD 유사활성은 10 mg/ml 농도에서 47.9%로 비교적 높은 SOD 유사활성을 나타내었다. Xanthine oxidase 저해활성 측정 실험에서는 1 mg/ml에서 71.9%의 높은 xanthine oxidase 저해 활성을 나타내었다. Tyrosinase의 저해 효과는 시료의 농도가 증가함에 따라 유의적으로 증가하는 경향을 나타내었으나 전체적인 활성은 4 mg/ml의 솔순 에탄올 추출물에서 15.2%로 나타났다. 솔순 추출물에 대한 항균력을 조사하기 위해 식중독균주인 S. aureus, E. coli, V. paraheamolyticus에 대한 성장저해 효과를 측정하였다. 그 결과 E. coli와 V. paraheamolyticus에 대해 높은 항균력을 나타냈다. 항고혈압 측정실험에서는 시판되는 항고혈압제와 동일한 농도($1{\mu}g/ml$)에서 captopril은 93.0%, 솔순은 50.6%의 저해률을 나타냈으며, $100{\mu}g/ml$에서는 60.8%의 저해률을 나타내어 ACE 저해 활성이 뛰어난 것으로 나타났다. 또한 LPS에 의하여 유도된 NO 합성은 $200{\mu}g/ml$ 농도의 솔순 에탄올 추출물을 처리함으로서 NO 합성률이 54.0% 정도 감소하였다. 이러한 결과는 솔순 에탄올 추출물이 면역기능과 밀접한 관계가 있음을 나타내고 있다. 이상의 결과로 보아 솔순 에탄올 추출물의 우수한 생리활성을 증명하고 있고, 또한 솔잎 추출물에 비해 항산화력, 자유레디칼 소거활성능, 미백효과, 면역활성 및 항고혈압 효과가 높은 것으로 나타나 기능성식품의 소재로서 그 활용도가 높을 것으로 판단된다.

Keywords

References

  1. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1198-1200
  2. Boo, Y. C., C. O. Jeon, and J. Y. Oh. 1994. Isolation of 4-hydroxy-5-methyl-3[2H]-furanone from pine needles as an antioxidative. Agric. Chem. Biotechnol. 37, 310-314
  3. Choi, E.-M. 2007. Antinociceptive and antiinflammatory activity of pine (Pinus dens flora) pollen extract. Phytotherapy Research 21, 471-475 https://doi.org/10.1002/ptr.2103
  4. Choi, H-D., Y.-J. Koh, I.-W. Choi, Y.-S. Kim, and Y.-K. Park. 2007. Anticariogenic activity and glucosyltransferase inhibitory effects of extracts from pine needle and twig. Kor. J. Food Technol. 39, 336-341
  5. Choi, H. S., D. Hang, S. C. Kang, E. S. Sohn, S. P. Lee, S. K. Pyo, and E. W. Son. 2006. Immunomodulatory activity of pine needle (Pinus dens flora) extracts in macrophages. J. Food Sci. Nutr. 11, 105-109 https://doi.org/10.3746/jfn.2006.11.2.105
  6. Choi, J. H., D. L Kim, S. H. Park, S. J. Back, N. J. Kim, W. K. Cho, K. J. Kim, and H. S. Kim. 2004. Effects of pine needle ethyl acetate fraction on acetylcholine (ACh) and its related enzymes in brain of rats. Kor. J. Nutr. 37, 95-99
  7. Cushman, D. W. and H. S. Cheung. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20, 1637-1648 https://doi.org/10.1016/0006-2952(71)90292-9
  8. Farias-Eisner, R., M. P. Sherman, E. Aeberhard, and G. Chaudhuri. 1994. Nitric oxide is an important mediator for tumoricidal activity in vivo. Proc. Natl. Acad. Sci. 91, 9407-9411 https://doi.org/10.1073/pnas.91.20.9407
  9. Hong, H.-D., N. Kang, and S.-S. Kim. 1998. Superoxide dismutase-like activity of apple juice mixed with some fruits and vegetables. Korean J. Food Sci. Technol. 30, 1484-1487
  10. Hong, T.-G., Y.-R. Lee, M.-H. Yim, and C.-N. Hyun. 2004. Physiological fuctionality and nitrite scavenging ability of fermentation extracts from pine needles. Korean J. Food Preserv. 11, 94-99
  11. Ignarro, L. J., J. M. Fukutto, J. M. Griscavage, N. E. Rogers, and R. E. Byrns. 1993. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrite: Comparison with enzymatically formed nitric oxide form L-arginine. Proc. Natl. Acad. Sci. 90, 8103-8107 https://doi.org/10.1073/pnas.90.17.8103
  12. Jang, M.-J., B.-J. An, C.-E. Lee, J.-T. Lee, B.-G. Lee, and D.-H Lee. 2008. Study on the anti-oxidant effect of Pinus rigida Mill. inner bark extracts. J. Kor. For. Soc. 97, 88-94
  13. Jang, M.-J., Y.-H. Kim, B.-J. An, C.-E. Lee, J.-T. Lee, S.-H. Kim, B.-G. Lee, and D.-H. Lee. 2008. Study on the anti-oxidant effect of Pinus rigida Mill. inner bark extracts as a cosmetic material. J. Kor. For. Soc. 97, 215-220
  14. Jeon, J. R., J. Y. Kim, K. M. Lee, and D. H. Cho. 2005. Anti-obese effects of mixture contained pine needle, black tea, and green tea extracts. J. Kor. Soc. Appl. BioI. Chem. 48, 375-381
  15. Kang, Y. H., Y. K. Park, S. R. Oh, and K. D. Moon. 1995. Studies on the physiological functionality of pine needle and mugwort extracts. Kor. J. Food Sci. Technol. 27, 978-984
  16. Kim, J. D., T. H. Yoon, M. Choi, K. J. Lim, J. S. Ju, and S. Y. Lee. 1990. Effect of dietary supplementation with pine leaf on lipid parameters in rat. Kor. J. Gerontol. 1, 47-50
  17. Kim, J.-W., D.-K. Kim, J.-S. Park, Y.-K Lee, K-Y. Beik and S.-D. Kim. 2009. Antioxidant and antimicrobial activities of shark collagens, and inhibitory actions on elastase and tyrosinase. Korean. J. Food Preserv. 16, 419-426
  18. Kim, Y. S. and D. H. Shin. 2004. Volatile components and antibacterial effects of pine needle (Pinus dens flora S. et Z.) extracts. Food Microbiol. 22, 37-45 https://doi.org/10.1016/j.fm.2004.05.002
  19. Kim, S. M., Y. S. Cho, S. K. Sung, I. G. Lee, S. H. Lee, and D. G. Kim. 2002. Antioxidative and nitrite scavenging activity of pine needle and green tea extracts. Kor. J. Food Sci.Anim. Resour. 22, 13-19
  20. Kuk, J. H., S. J. Ma, and K. H. Park. 1997. Isolation and characterization of benzoic acid with antimicrobial activity from needle of Pinus dens flora. Kor. J. Food Sci. Technol. 29, 204-210
  21. Kwak, C. S., S. C. Moon, and M. S. Lee. 2006. Antioxidant, antimutagenic, and antitumor effects of pine needles (Pine densiflora). Nutrition Cancer 56, 162-171 https://doi.org/10.1207/s15327914nc5602_7
  22. Lee, O. H., K. Y. Kim, M.-K. Jang, K. H. Yu, S. G. Kim, M H. Kim, and S. -H. Lee. 2008. Evaluation of proanthocyanidin contents in total polyphenolic compounds of pine (Pinus densiflora) needle extracts and their antioxidative activities. J. Life Sci. 18, 213-219
  23. Lim, Y.-S., M.-J. Bae, and S.-H. Lee. 2002. Antimicrobial effects of Pinus densiflora Sieb. et Zucco ethanol extract on Listeria monocytogenes. J. Korean. Soc. Food. Sci. Nutr. 31, 333-337 https://doi.org/10.3746/jkfn.2002.31.2.333
  24. Lim, Y.-S., K.-N. Park, M.-J. Bae, and S.-H. Lee. 2001. Antimicrobial effects of Pinus densflora Sieb. et Zucco extract on pathogenic microorganism. Kor. J. Postharvest Sci. Technol. 8, 462-468
  25. Marklund, S. and G. Marklund. 1975. Involvement of superoxide aminoradical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 468-474
  26. Mosmann, T. 1993. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays J. Immunol. Method. 65, 55-63
  27. Murakami, A., G. Gao, O. K. Kim, M. Omura, M. Yano, I. Ito, H. Furukawa, S. Jiwajinda, K. Koshimizu, and H. Ohigashi. 1999. Identification of courmarins from the fruit of Citrus hystrix DC as inhibitor of nitric oxide generation in mouse macrophage Raw 264.7 cells J. Agr. Food Chem. 47, 333-330 https://doi.org/10.1021/jf980523e
  28. Nice, D. J., D. S. Robinson, and M. A. Jolden. 1995. Characterization of a heat-stable antioxidant co-purified with the superoxide dismutase activity from dried peas. Food Chem. 52, 393-397 https://doi.org/10.1016/0308-8146(95)93288-3
  29. Parejo, I., F. Viladomat, J. Bastida, A. Rosas-Romero, N. Flerlage, J. Burillo, and C. Conida. 2002. Comparision between the radical scavenging activity and antioxidant activity of six distilled and nondistilled Mediterranean herbs and aromatic plants. J. Agric. Food Chem. 50, 6882-6890 https://doi.org/10.1021/jf020540a
  30. Park, Y.-E., H.-M. Cho, H.-J. Lee, Y.-S. Hwang, S.-S.-N. Choi, S.-J. Lee, E.-S. Park, J.-D. Lim, and M.-G. Choung. 2007. Antioxidant and inhibition on angiotensin converting enzyme activity of colored potato extracts. Korean J. Crop Sci. 52, 447-452
  31. Ruidavets, J., P. Teissedre, J. Ferrieres, S. Carando, G. Bougard, and J. Cabanis. 2000. Catechin in the Mediterranean diet: vegetable, fruit or wine? Atherosclerosis 153, 107 - 117 https://doi.org/10.1016/S0021-9150(00)00377-4
  32. Singleton, V. L., R. Orthofer, and R. M. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol. 299, 152-178 https://doi.org/10.1016/S0076-6879(99)99017-1
  33. van der Veen, R. C. 2001. Nitric oxide and T cell immunity. Int. Immunophamacol. 1, 1491-1500 https://doi.org/10.1016/S1567-5769(01)00093-5
  34. Yen, G.-C., P.-D. Duh, D.-W. Huang, C.-L. Hsu, and T. Y-.C. Fu. 2008. Protective effect of pine (Pinus morrisonicola Hay.) needle on LDL oxidation and its anti-inflammatory action by modulation of iNOS and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. Food. Chemical Toxicol. 46, 175-185 https://doi.org/10.1016/j.fct.2007.07.012
  35. Yoo, J.-H., J.-Y. Cha, Y.-K. Jeong. K.-T. Chung, and Y.-S. Cho. 2004. Antioxidative effects of pine (Pinus dens flora) needle extracts. J. Life Sci. 14, 863-867 https://doi.org/10.5352/JLS.2004.14.5.863

Cited by

  1. Antioxidative activity and Angiotensin Converting Enzyme Inhibitory activity of Fermented Medical Plants (DeulBit) and Its Modulatory Effects of Nitric Oxide Production vol.53, pp.2, 2010, https://doi.org/10.3839/jabc.2010.017
  2. Physiological Activities of Hot Water Extract from Pine Bud (Pinus densiflora) vol.39, pp.11, 2010, https://doi.org/10.3746/jkfn.2010.39.11.1573
  3. Biological activities of extracts fromCaryopteris incanaMiq. vol.60, pp.1, 2017, https://doi.org/10.3839/jabc.2017.011
  4. Whitening and anti-aging effects ofCistanche deserticolaextract vol.43, pp.4, 2016, https://doi.org/10.5010/JPB.2016.43.4.492
  5. Effects of Fermentation on the Metabolic Activities of Pine Needle Juice vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.325
  6. Biological activities of Aster scaber extracts vol.23, pp.3, 2016, https://doi.org/10.11002/kjfp.2016.23.3.393