DOI QR코드

DOI QR Code

Fabrication of Ni-AC/TiO2Composites and their Photocatalytic Activity for Degradation of Methylene Blue

  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Son, Joo-Hee (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Meng, Ze-Da (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Feng-Jun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Published : 2009.01.31

Abstract

Activated carbon modified with nickel (Ni-AC) was employed the for preparation of Ni-activated carbon/$TiO_2$ (Ni-AC/$TiO_2$) composites. The $N_2$ adsorption data showed that the composites had a decreased surface area compared with pristine AC. This indicated blocking of the micropores on the surface of the AC, which was further supported by observation via SEM. XRD results showed that the Ni-AC/$TiO_2$ composite contained a mixed anatase and rutile phase while the untreated AC/$TiO_2$ contained only a typical single and clear anatase phase. EDX results showed the presence of C, O, and Ti with Ni peaks on the composites of Ni-AC/$TiO_2$. Subsequently, the photocatalytic effects on methylene blue (MB) were investigated. The improved decomposition of MB showed the combined effects of adsorptions and photo degradation. In particular, composites treated with Ni enhanced the photo degradation behaviors of MB.

Keywords

References

  1. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., 95 69-96 (1995). https://doi.org/10.1021/cr00033a004
  2. F. Soana, M. Sturini, L. Cermenati, and A. Albini, “Titanium Dioxide Photocatalyzed Oxygenation of Naphthalene and Some of Its Derivatives,” J. Chem. Soc., Perkin. Trans. 2., 699-704 (2000). https://doi.org/10.1039/a908945d
  3. T. Ohno, N. Murakami, T. Tsubota, and H. Nishimura, “Development of Metal Cation Compound-Loaded S-Doped $TiO_2$ Photocatalysts Having A Rutile Phase Under Visible Light,” Appl. Catal.A: Gen., 349 70-5 (2008). https://doi.org/10.1016/j.apcata.2008.07.016
  4. T. Torimoto, Y. Okawa, N. Takeda, and H. Yoneyama, “Effect of Activated Carbon Content in $TiO_2$-loaded Activated Carbon on Photodegradation Behaviors of Dichloromethane,” J. Photochem. Photobiol. A: Chem., 103 153- 57 (1997). https://doi.org/10.1016/S1010-6030(96)04503-0
  5. J. Matos, J. Laine, and J. M. Herrman, “Synergy Effect in the Photocatalytic Degradation of Phenol on a Suspended Mixture of Titania and Activated Carbon,” Appl. Catal. B: Environ., 18 281-91 (1998). https://doi.org/10.1016/S0926-3373(98)00051-4
  6. X. Z. Li, H. Liu, and L. F. Cheng, “Photocatalytic Oxidation using a New Catalyst-$TiO_2$ Microsphere-for Water and Wastewater Treatment,” Environ. Sci. Technol., 37 3989- 94 (2003). https://doi.org/10.1021/es0262941
  7. M. L. Chen, C. S Lim, and W. C. Oh, “Photocatalytic Effect For $TiO_2$/ACF Composite Electrochemically Prepared with TNB Electrolyte,” Carbon letters., 8 [3] 177-83 (2007). https://doi.org/10.5714/CL.2007.8.3.177
  8. W. C. Oh and M. L. Chen, “Electrochemical Preparation of $TiO_2$/ACF Composites With TNB Electrolyte and Their Photocatalytic Effect,” J. Ceram. Process. Res., 9 [2] 100-6 (2008).
  9. J. Matos, J. Laine, and J. M. Herrman, “Effect of the Type of Activated Carbons on the Photocatalytic Degradation of Aqueous Organic Pollutants by UV-Irradiated Titania,” J. Catal., 200 10-20 (2001). https://doi.org/10.1006/jcat.2001.3191
  10. B. Tryba, A. W. Morawski, and M. Inagaki, “Application of $TiO_2$-mounted Activated Carbon to the Removal of Phenol from Water,” Appl. Catal. B: Environ., 41 427-35 (2003). https://doi.org/10.1016/S0926-3373(02)00173-X
  11. C. H. Ao and S. C. Lee, “Enhancement Effect of $TiO_2$ Immobilized on Activated Carbon Filter for the Photodegradation of Pollutants at Typical Indoor Air Level,” Appl. Catal. B: Environ., 44 191-205 (2003). https://doi.org/10.1016/S0926-3373(03)00054-7
  12. Y. C. Chiang and C. P. Huang, “Effects of Pore Structure and Temperature on VOC Adsorption on Activated Carbon,” Carbon, 39 523-34 (2001). https://doi.org/10.1016/S0008-6223(00)00161-5
  13. M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura, and M. Toyoda, “Carbon Coating of Anatase-type $TiO_2$ through Their Precipitation in PVA Aqueous Solution,” Carbon, 41 2619-24 (2003). https://doi.org/10.1016/S0008-6223(03)00340-3
  14. G. M. Col´on, C. Hidalgo, and M. Macias, “Enhancement of $TiO_2$/C Photocatalytic Activity by Sulfate Promotion,” Appl. Catal. A: Gen., 259 235-43 (2004). https://doi.org/10.1016/j.apcata.2003.09.036
  15. M. C. Lu and J. N. Chen, “Effect of Adsorbents Coated with Titanium Dioxide on the Photocatalytic Degradation of Propoxur,” Chemosphere., 38 617-27 (1999). https://doi.org/10.1016/S0045-6535(98)00204-5
  16. J. Arana and J. M. Dona, “$TiO_2$ Activation by using Activated Carbon as a Support Part I. Surface Characterisation and Decantability Study,” Appl. Catal. B: Environ., 44 161-8 (2003). https://doi.org/10.1016/S0926-3373(03)00107-3
  17. S. X. Liu, X. Y. Chen, and X. Chen, “A $TiO_2$/AC Composite Photocatalyst with High Activity and Easy Separation Prepared by a Hydrothermal Method,” J. Hazard.Mater., 143 257-63 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.026
  18. W. C. Oh, M. L. Chen, and C. S. Lim, “Preparation with Different Mixing Ratios of Anatase to Activated Carbon and their Photocatalytic Performance,” J. Ceram. Proceed. Res., 8 119-25 (2007).
  19. W. C. Oh, M. L. Chen, and Y. S. Ko, “Preparation of AC/ $TiO_2$ Composites from Activated Carbon Modified by $HNO_3$ and their Photocatalytic Activity,” Carbon Science, 8 6-11 (2007).
  20. W. C. Oh, J. S. Bae, M. L. Chen and Y. S. Ko, “Characterization of Composite Prepared with Different Mixing Ratio of $TiO_2$ to Activity Carbon and their Photocatalytic Activity,” Analy. Sci. Technol., 19 376-82 (2006).
  21. W. C. Oh, J. S. Bae, and M. L. Chen, “Characterization of AC/$TiO_2$ Composite Prepared with Pitch Binder and their Photocatalytic Activity,” Bull. Korean Chem. Soc., 27 1423- 8 (2006). https://doi.org/10.5012/bkcs.2006.27.9.1423
  22. W. C. Oh, J. S. Bae, and M. L. Chen, “Photocatalytic Effect for the Pitch-coated $TiO_2$,” Analy. Sci. Technol., 19 301-7 (2006).
  23. S. F. Chen, S. J. Zhang, W. Liu, and W. Zhao, “Preparation and Activity Evaluation of P-N Junction Photocatalyst NiO/$TiO_2$,” J. Hazard. Mater., 155 320-6 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.063
  24. A. Wisitsoraat, A. Tuantranont, E. Comini, G. Sberveglieri, and W. Wlodarski, “Characterization of n-type and p-type Semiconductor Gas Sensors Based on $NiO_x$ Doped $TiO_2$ Thin Films,” Thin Solid Films (2008), doi:10.1016/j.tsf.2008.10.090
  25. J. Escobar, M. C. Barrera, J. A. de los Reyes , J. A. Toledo, V. Santes, and J. A. Col'ln, “Effect of Chelating Ligands on Ni-Mo Impregnation Over Wide-Pore $ZrO_2$-$TiO_2$,” J. Mole.Catal. A: Chem., 287 33-40 (2008). https://doi.org/10.1016/j.molcata.2008.02.022
  26. A. Abdel Aal, Hana B. Hassan, and M. A. Abdel Rahim, “Nanostructured Ni-P-$TiO_2$ Composite Coatings for Electrocatalytic Oxidation of Small Organic Molecules,” J. Electroanaly. Chem., 619 17-25 (2008). https://doi.org/10.1016/j.jelechem.2008.03.004
  27. P. A. Gay, P. Berçot, and J. Pagetti, “Electrodeposition and Characterization of Ag-$ZrO_2$ Electroplated Coatings,” Surf. Coat. Technol., 140 147-54 (2001). https://doi.org/10.1016/S0257-8972(01)01043-X
  28. F. Hou, W. Wang, and H. Guo, “Effect of the Dispersibility of $ZrO_2$ Nanoparticles in Ni-$ZrO_2$ Electroplated Nanocomposite Coatings on the Mechanical Properties of Nanocomposite Coatings,” Appl. Surf. Sci., 252 3812-7 (2006). https://doi.org/10.1016/j.apsusc.2005.05.076
  29. F. Hu and K. C. Chan, “Electrocodeposition Behavior of Ni- SiC Composite Under Different Shaped Waveforms,” Appl. Surf. Sci., 233 163-9 (2004). https://doi.org/10.1016/j.apsusc.2004.03.013
  30. A. F. Zimmerman, D. G. Clark, K. T. Aust, and U. Erb, “Pulse Electrodeposition of Ni-SiC Nanocomposite,” Mater. Lett., 52 85-90 (2002). https://doi.org/10.1016/S0167-577X(01)00371-8
  31. G. Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, and V. Rives, “Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/$TiO_2$ Systems. 2. Surface, Bulk Characterization, and 4-nitrophenol Photodegradation in Liquid-solid regime,” J. Phys. Chem. B., 105 1033-40 (2001). https://doi.org/10.1021/jp003173j
  32. C. C. Hsu and N. L. Wu, “Synthesis and Photocatalytic Activity of ZnO/$ZnO_2$ Composite,” J .Photochem. Photobiol. A: Chem., 172 269-74 (2005). https://doi.org/10.1016/j.jphotochem.2004.12.014
  33. I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytides, and P. Falaras, “Silver Modified Titanium Dioxide Thin Films for Efficient Photodegradation of Methyl Orange,” Appl. Catal. B: Environ., 42 187-201 (2003). https://doi.org/10.1016/S0926-3373(02)00233-3
  34. V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, “Photocatalytic Oxidation of Organics in Water using Pure and Silver-Modified Titanium Dioxide Particles,” J. Photochem. Photobiol. A Chem., 148 233-9 (2002). https://doi.org/10.1016/S1010-6030(02)00049-7
  35. F. J. Zhang, M. L. Chen, and W. C. Oh, “Synthesis and Characterization of CNT/$TiO_2$ Photoelectrocatalytic Electrodes for Methlene Blue Degradation,” Kor. J. Mater. Res., DOI: 10.3740/MRSK.2008.18.9.000.
  36. W. D Wang, P. Serp, P. Kalck, and J. L. Faria, “Visible Light Photodegradation of Phenol on MWNT-$TiO_2$ Composite Catalysts Prepared by a Modified Sol-Gel Method,” J. Mole. Catal. A: Chem., 235 194-9 (2005). https://doi.org/10.1016/j.molcata.2005.02.027
  37. W. C. Oh and M. L. Chen, “Formation of $TiO_2$ Composites on Activated Carbon Modified by Nitric Acid and their Photocatalytic Activity,” J. Ceram. Process.Res., 8 [5] 316-23 (2007).
  38. M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura, and M. Toyoda, “Carbon Coating of Anatase-type $TiO_2$ Through Their Precipitation in PVA Aqueous Solution,” Carbon, 41 2619-24 (2003). https://doi.org/10.1016/S0008-6223(03)00340-3
  39. S. Karvinen, “The Effects of Trace Elements on the Crystal Properties of $TiO_2$,” Solid. State. Sci., 5 811-9 (2003). https://doi.org/10.1016/S1293-2558(03)00082-7
  40. K. Okada, N. Yamamoto, Y. Kameshima, A. Yasumori, and K. Mackenzie, “Effect of Silica Additive on the Anatase-to- Rutile Phase Transition,” J. Am. Ceram. Soc., 84 [7] 1591-6 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00882.x
  41. W. C. Oh, M. L.Chen , F. J. Zhang, and H. T. Jang, “Effect of Fe Contents in Fe-AC/$TiO_2$ Composites on Photodegradation Behaviors of Methylene Blue,” J. Kor. Ceram. Soc., 45 [6] 324-30 (2008). https://doi.org/10.4191/KCERS.2008.45.6.324
  42. J. M. Coronado, K. L. Yeung, J. Soria, J. M. Coronado, C. Belver, C. Y. Lee, and V. Augugliaro, “Gas-phase Photooxidation of Toluene Using Nanometer-size $TiO_2$ Catalysts,” Appl. Catal. B: Environ., 29 327-36 (2001). https://doi.org/10.1016/S0926-3373(00)00211-3

Cited by

  1. Effect of Pt treated fullerene/TiO2 on the photocatalytic degradation of MO under visible light vol.21, pp.21, 2011, https://doi.org/10.1039/c1jm10301f
  2. Composites and Their Photocatalytic Activity Under Visible Light vol.48, pp.3, 2011, https://doi.org/10.4191/KCERS.2011.48.3.211
  3. Composite Catalysts on the Photocatalytic Degradation of MO Under Visible Light vol.48, pp.6, 2011, https://doi.org/10.4191/kcers.2011.48.6.571
  4. Photocatalytic Oxidation Based on Modified Titanium Dioxide with Reduced Graphene Oxide and CdSe/CdS as Nanohybrid Materials vol.29, pp.2, 2018, https://doi.org/10.1007/s10876-017-1326-6