Adsorption of Arsenic on Goethite

침철석(goethite)과 비소의 흡착반응

  • Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Woo-Chun (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Jeong, Hyeon-Su (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen-Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 김순오 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 이우춘 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 정현수 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소)
  • Published : 2009.09.30

Abstract

Iron (oxyhydr)oxides commonly form as secondary minerals of high reactivity and large surface area resulting from alteration and weathering of primary minerals, and they are efficient sorbents for inorganic and organic contaminants. Accordingly, they have a great potential in industrial applications and are also of substantial interest in environmental sciences. Goethite (${\alpha}$-FeOOH) is one of the most ubiquitous and stable forms of iron (oxyhydr)oxides in terrestrial soils, sediments, and ore deposits, as well as a common weathering product in rocks of all types. This study focused on adsorption reaction as a main mechanism in scavenging arsenic using goethite. Goethite was synthesized in the laboratory to get high purity, and a variety of mineralogical and physicochemical features of goethite were measured and related to adsorption characteristics of arsenic. To compare differences in adsorption reactions between arsenic species, in addition, a variety of experiments to acquire adsorption isotherm, adsorption edges, and adsorption kinetics were accomplished. The point of zero charge (PZC) of the laboratory-synthesized goethite was measured to be 7.6, which value seems to be relatively higher, compared to those of other iron (oxyhydr)oxides. Its specific surface area appeared to be $29.2\;m^2/g$ and it is relatively smaller than those of other (oxyhydr)oxides. As a result, it was speculated that goethite shows a smaller adsorption capacity. It is likely that the affinity of goethite is much more larger for As(III) (arsenite) than for As(V) (arsenate), because As(III) was observed to be much more adsorbed on goethite than As(V) in equivalent pH conditions. When the adsorption of each arsenic species onto goethite was characterized in various of pH, the adsorption of As(III) was largest in neutral pH range (7.0~9.0) and decreased in both acidic and alkaline pH conditions. In the case of As(V), the adsorption appeared to be highest in the lowest pH condition, and then decreased with an increase of pH. This peculiarity of arsenic adsorption onto goethite might be caused by macroscopic electrostatic interactions due to variation in chemical speciation of arsenic and surface charge of goethite, and also it is significantly affected by change in pH. Parabolic diffusion model was adequate to effectively evaluate arsenic adsorption on goethite, and the regression results show that the kinetic constant of As(V) is larger than that of As(III).

철 (산수)산화물은 높은 반응성과 큰 비표면적 등의 특성을 갖는 이차광물로서 환경관련 산업이나 연구에서 무기 및 유기 오염물질들을 효과적으로 제거할 수 있는 수착제로 널리 활용되어 오고 있다. 이러한 철 (산수)산화물들 중에서 침철석(${\alpha}$-FeOOH)은 지중에서 가장 많이 분포하고 안정된 광물로 알려져 있다. 본 연구에서는 이러한 침철석을 이용하여 비소를 제거하는데 있어서 주요한 기작인 흡착반응에 대하여 알아보았다. 순수한 침철석을 얻기 위하여 실험실에서 합성하였으며, 침철석의 다양한 광물학적, 물리화학적 특성들을 분석하여 비소와의 흡착반응을 해석하는데 이용하였다. 그리고 비소의 화학종별 침철석에 대한 흡착특성을 비교하기 위하여 흡착 등온식을 얻기 위한 평형흡착실험, pH에 따른 흡착실험, 흡착반응속도 실험 등을 수행하였다. 합성된 침철석의 영전하점(point of zero charge, PZC)은 7.6으로 다른 철 (산수)산화물들에 비해서 상대적으로 약간 높은 값으로 측정되었다. 침철석의 비표면적은 $29.2\;m^2/g$으로 다른 철 (산수)산화물들에 비해 비교적 낮게 나타나서 흡착력이 다소 떨어질 것으로 예상되었다. 침철석에 대한 친화도는 3가 비소(아비산 이온)가 5가 비소(비산 이온)보다 훨씬 더 커서 동일한 pH 조건에서 3가 비소가 5가 비소보다 침철석에 많이 흡착되는 것으로 조사되었다. pH에 따른 비소 화학종별 흡착특성을 살펴보면 3가 비소는 중성의 pH 범위(7.0~9.0)에서 가장 높은 흡착을 보였으며, 산성 또는 염기성 pH 조건에서는 흡착량이 크게 감소하는 것으로 나타났다. 5가 비소의 경우에는 낮은 pH 조건에서 가장 흡착이 잘 일어났으며 pH가 증가함에 따라서 흡착은 감소하는 것으로 나타났다. 이러한 거시적인 현상은 pH에 따라서 각 비소종의 화학적 존재형태와 침철석의 표면 전하가 변하기 때문에 발생하는 정전기적인 작용에 의한 것으로 생각된다. 침철석과 비소와의 흡착반응속도를 가장 잘 모사하는 반응속도 모델은 parabolic diffusion 모델인 것으로 평가되었으며, 회귀 분석 결과 5가 비소가 3가 비소보다 반응속도상수가 크게 나타났다.

Keywords

References

  1. 고경석, 오인숙, 김재곤, 안주성, 김형수, 석희준 (2006) 황산염처리 산화철피복모래의 비소 흡착능 평가 연구 2006년 자원환경지질학회 춘계 학술발표회(초록), 제주도 4월 19일, 445-448p
  2. 고일원, 이상우, 김주용, 김경웅, 이철효 (2004) 나노크기 적철석 입자 피복 모래를 이용한 비소 3가와 비소 5가의 제거. 지하수토양환경, 9, 63-69
  3. 고일원 김주용, 김경웅, 안주성 (2005) 비소의 적철석표면 흡착에 토양 유기물이 미치는 영향: 화학종 모델링과 흡착 기작. 자원환경지질, 38, 23-31
  4. 김순오, 정영일, 조현구, 최선희, 이현휘 (2007) 비소와영가철 및 철(수)산화물과의 표면반응에 대한 X선 흡수분광 예비연구. 2007년 한국광물학회 . 한국암석학회 공동학술발표회(초록). 안동대학교 5월 31일, 131-134p
  5. 안주성, 김주용, 전철민, 문희수 (2003) 풍화 광미 내고상 비소의 광물학적 . 화학적 특성 및 용출 가능성 평가 자원환경지질, 36, 27-38
  6. 안주성, 고경석, 이진수, 김주용 (2005) 자연적 지하수 비소오염의 국내외 산출특성. 자원환경지질, 38, 547-561
  7. 이우춘, 정현수, 김주용, 김순오 (2009) 레피도크로사이트(lepidocrocite) 표면의 비소 흡착 특성 규명. 자원환경지질, 42, 95-105
  8. 정영일, 김인선, 김순오 (2006) 영가철을 이용한 광미용출액으로부터 비소 재거에 관한 연구. 2006년 대한지질학회 추계학술회(초록). 한국지질자원연구원 10월 26일, 149p
  9. 정영일, 김순오, 김인선, 조현구 (2007) Long-term evaluation of the feasibility of zerovalent iron for the removal of arsenic and heavy metals from tailing-Ieachate. 2007년 춘계 지질과학기술 공동학술대회(초록). 경주 4윌 25일, 382-384p
  10. 정영일, 이우춘, 조현구, 윤성택, 김순오 (2008) 비소의 Two-Line Ferrihydrite에 대한 흡착반응. 한국광물학회지, 21, 227-237
  11. 정현수, 이우춘, 조현구, 김순오 (2008) 자철석의 비소에 대한 흡착특성 연구. 한국광물학회지, 21, 227-237
  12. Aquino, A.J.A., Tunega, D., Haberhauer, G., Gerzabek, M.H., and Lischka, H. (2008) Acid-base properties of a goethite surface model: A theoretical view. Geochimica et Cosmochimica Acta, 72, 3587-3602 https://doi.org/10.1016/j.gca.2008.04.037
  13. Bai, B., Hankins, N.P., Hey, M.J., and Kingman, S.W. (2004) In situ mechanistic study of SDS adsorption on hematite for optimized froth flotation. Industrial Engineering and Chemistry Research, 43, 5326-5338 https://doi.org/10.1021/ie034307t
  14. Carrasco, N., Kretzchmar, R., Pesch, M.-L., and Kraemer, S.M. (2007) Low concentrations of surfactants enhanced siderophore-promoted dissolution of goethite. Environmental Science and Technology, 37, 3633-3638
  15. Dixit, S. and Hering, J.G. (2003) Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science and Technology, 37, 4182-4189 https://doi.org/10.1021/es030309t
  16. Du, Q., Sun, Z., Forsling, W., and Tang, H. (1997) Acid-base properties of aqueous illite surfaces. Journal of Colloid and Interface Science, 187, 221-231 https://doi.org/10.1006/jcis.1996.4631
  17. Fendrof, S., Eick, M.J., Grossl, P., and Sparks, D.L. (1997) Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environmental Science and Technology, 31, 315-320 https://doi.org/10.1021/es950653t
  18. Gao, Y. and Mucci, A. (2001) Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCI solution. Geochimica et Cosmochimica Acta, 65, 2361-2378 https://doi.org/10.1016/S0016-7037(01)00589-0
  19. Gimenez, J., Martinez, M., de Pablo, J., Rovira, M., and Duro, L. (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials., 141, 575-580 https://doi.org/10.1016/j.jhazmat.2006.07.020
  20. He, Y.T. and Traina, S.J. (2005) Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: The role of passivation. Environmental Science and Technology, 39, 4499-4504 https://doi.org/10.1021/es0483692
  21. Ho, Y. S. and McKay, G. (1999) Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451-465 https://doi.org/10.1016/S0032-9592(98)00112-5
  22. Inskeep, W.P., McDermott, T.R., and Fendorf, S. (2002) Arsenic (V)/(III) cycling in soils and natural waters: chemical and microbiological processes. In: Franken-berger, W.T.,Jr. (ed.), Environmental Chemistry of Arsenic, Marcel Dekker, New York, 183-215
  23. Jain, A., Raven, K.P., and Loeppert, R.H. (1999) Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH- release stoichiometry. Environmental Science and Technology, 33, 1179-1184 https://doi.org/10.1021/es980722e
  24. Jonsson, C.M., Persson, P., Sjoberg, S., and Loring, J.S. (2008) Adsorption of glyphosate on goethite ( $\alpha$-FeOOH): Surface complexation modeling com bining spectroscopic and adsorption data. Environmental Science and Technology, 42, 2464-2469 https://doi.org/10.1021/es070966b
  25. Jung, Y.I., Cho, H.G., Kim, I.S., and Kim, S.O. (2007) Application of zerovalent iron for the removal of arsenic from leachate of tailing. The 60th anniversary of geological society of Korea (Abstracts for the international symposium on global environmental change), Seoul April 12-13, 52p
  26. Kim, S.O., Jung, Y.I., Cho, H.G. Park., W.J., and Kim, I.S. (2007) Removal of arsenic from leachate of tailing using laboratory-synthesized zerovalent iron. Journal of Applied and Biological Chemistry, 50, 6-12
  27. Lowry, G.Y. and Johnson, K.M. (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science and Technology, 38, 5208-5216 https://doi.org/10.1021/es049835q
  28. Manning, B.A., Fendrof, S., and Goldberg, S. (1998) Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence. for inner-sphere complexes. Environmental Science and Technology, 32, 2383-2388 https://doi.org/10.1021/es9802201
  29. Manning, B.A., Hunt, M.L., Amrhein, C.A., and Yarniff, J.A. (2002) Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environmental Science and Technology, 36, 5455-5461 https://doi.org/10.1021/es0206846
  30. Martinez, M., Miralles, N., Hidalgo, S., Fiol, N., Villaescusa, I., and Poch, J. (2006) Removal of lead(Il) and cadmium(II) from aqueous solutions using grape stalk waste. Journal of Hazardous Materials, B133, 203-211
  31. Morin, G. and Calas, G. (2006) Arsenic in soils, mine tailings, and former industrial sites. Elements, 2, 97-101 https://doi.org/10.2113/gselements.2.2.97
  32. Nielsen, U.G., Paik, Y., Julmis, K., Schoonen, M.A.A., Reeder, R.J., and Grey, C.P. (2005) Investigating sorpton on iron-oxyhydroxide soil minerals by solid state NMR spectroscopy: A 6Li MAS NMR study of adsorption and absorption on goethite. Journal of Physical Chemistry B., 109, 18310-18315 https://doi.org/10.1021/jp051433x
  33. Nowack, B., Lutzenkirchen, J., Behra, P., and Sigg, L. (1996) Modeling the adsorption of metal - EDTA complexes onto oxides, Environmental Science and Technology, 30, 2397-2405 https://doi.org/10.1021/es9508939
  34. Nriagu, J. (2002) Arsenic poisoning through the ages. In: Frankenberger, W.T., Jr. (ed.), Environmental Chemistry of Arsenic, Marcel Dekker, New York, 21-22
  35. Ona-Nguema, G., Morin, G., Juillot, F., Calas, G., and Brown, Jr., G.E. (2005) EXAFS analysis of arsenite adsorption onto two-linε ferrihydrite, hematite, goethite, and lepidocrocite. Environmental Science and Technology, 39, 9147-9155 https://doi.org/10.1021/es050889p
  36. Ona-Nguema, G., Morin, G., Wang, Y., Menguy, N., Juillot, F., Luca, O., Aquilanti, G., Abdelmoula, M, Ruby, C., Bargar, J.R., Guyot, F., Calas, G., and Brown, Jr., G.E. (2009) Arsenite sequestration at the surface of nano-Fe$(OH)_2$, ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefaciens. Geochimica et Cosmochimica Acta, 73, 1359-1381 https://doi.org/10.1016/j.gca.2008.12.005
  37. Ponder, S.M., Darab, J.G., and Mallouk, T.E. (2000) Remediation of Cr(VI) and PB(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science and Technology, 34, 2564-2569 https://doi.org/10.1021/es9911420
  38. Raven, K.P., Jain, A., and Loeppert, R.H. (1998) Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environmental Science and Technology, 32, 344-349 https://doi.org/10.1021/es970421p
  39. Rietra, R.P.J.J., Hiemstra, T., and van Riemsdijk, W.H. (2001) Interaction between calcium and phosphate adsorption on goethite. Environmental Science and Technology, 35, 3369-3374 https://doi.org/10.1021/es000210b
  40. Schwertmann U. and CorneII R.M. (2000) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH Publishers, New York, USA. 188p
  41. Sherman, D.M. and Randall, S.R. (2003) Surface complexation of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 67, 4223-4230 https://doi.org/10.1016/S0016-7037(03)00237-0
  42. Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517-568 https://doi.org/10.1016/S0883-2927(02)00018-5
  43. Sparks, D.L. (1999) Kinetics and mechanisms of chemical reactions at the soil/mineral water interface. In 'Soil Physical Chemistry', 2nd ed. (D. L. Sparks, ed.), pp. 135-191, CRC Press, Boca Raton, FL
  44. Sparks, D.L. (2003) Environmental Soil Chemistry, pp 207-244, Academic Press, San Diega, CA
  45. Vaughan, D.J. (2006) Arsenic. Elements, 2, 71-75 https://doi.org/10.2113/gselements.2.2.71
  46. Wust, W., Kober, R., Schlicker, O., and Dahmke, A. (1999) Combined zero- and first-order kinetic model of the degradation of TCE and cis-DCE with commercial iron. Environmental Science and Technology, 33, 4304-4309 https://doi.org/10.1021/es980439f