Morphology and Rheological Property of PLA/PCL Blend Compatibilized by Electron Beam Irradiation

전자선 조사에 의해 상용화된 PLA/PCL 블렌드의 모폴로지 및 유변학적 성질

  • Shin, Boo-Young (School of Display and Chemical Engineering, Yeungnam University) ;
  • Cho, Baek-Hee (Department Ophthalmic Optics, Gimcheon College) ;
  • Hong, Ki-Heon (Department Ophthalmic Optics, Gimcheon College) ;
  • Kim, Bong-Shik (School of Display and Chemical Engineering, Yeungnam University)
  • 신부영 (영남대학교 디스플레이화학공학부) ;
  • 조백희 (김천대학 안경광학과) ;
  • 홍기헌 (김천대학 안경광학과) ;
  • 김봉식 (영남대학교 디스플레이화학공학부)
  • Published : 2009.11.25

Abstract

The aim of this study was to increase compatibility of immiscible PLA/PCL blend by using electron beam irradiation in the presence of glycidyl methacrylate (GMA). The blends of PLA/PCL containing GMA were irradiated at doses of 10, 50 and 100 kGy and then the irradiated samples were characterized by observing morphology and rheological properties. Blends irradiated with 50 and 100 kGy showed greatly improved interfacial adhesion between two phases in the morphology. Complex viscosity of PLA/PCL(9/1) blend irradiated at dose of 100 kGy was about 100 times higher than that of pure PLA. We found that the compatibility of immiscible PLA/PCL could be improved by electron beam irradiation in the presence of GMA from the investigation of morphology and rheology.

본 연구의 목적은 기능성 단량체인 glycidyl methacrylate(GMA)와 전자선을 이용하여 비혼화성 poly (lactic acid) (PLA)/polycaprolactone (PCL) 블렌드의 상용성을 높이고자 하는 것이다. GMA를 포함하는 PLA/PCL 블렌드에 10, 50, 100 kGy의 전자선을 조사하여 시료를 제조한 후 모폴로지 및 유변학적 물성을 조사하였다. 50과 100 kGy로 조사된 블렌드는 크게 변화된 계면 형상을 보였고, 복합점도와 저장탄성률 또한 전자선을 조사하지 않은 블렌드에 비해 크게 증가하였다. 특히 100 kGy로 조사된 PLA/PCL(9/1) 블렌드의 복합점도는 순수 PLA보다 약 100배 가까운 증가를 보였다. 기능성 단량체 첨가와 적절한 전자선 조사로 비혼화성 PLA/PCL 블렌드의 상용성을 증가시킬 수 있었다.

Keywords

References

  1. R. Narayan, 'Rationale, Drivers, and Technology Examples', in Biobased & Biodegradable Polymer Materials, K. C. Khemmani and C. Scholz, Editors, ACS, Washington DC, 2006
  2. K. I. Han and H. J. Kang, Polymer(Korea), 22, 596 (1998)
  3. Y. Min, S. Lee, J. K. Park, K. Y. Cho, and S. J. Sung, Macromol. Res., 16, 231 (2008) https://doi.org/10.1007/BF03218858
  4. S. B. David, J. D. Geyer, A. Gustafson, J. Snook, and R. Narayan, 'Biodegradation and Composting Studies of Polymeric Materials', in Biodegradable Plastics and Polymers, Y. Doi and K. Fukuda, Editors, Elsevier, Osaka, p 601 (1993)
  5. J. R. Lee, S. W. Chun, and H. J. Kang, Polymer(Korea), 27, 285 (2003)
  6. D. Carlson, P. Dubois, and R. Narayan, Polym. Eng. Sci., 38, 311 (1998) https://doi.org/10.1002/pen.10192
  7. M. Harada, K. Lida, K. Okamoto, H. Hayashi, and K. Hirano, Polym. Eng. Sci., 48, 1359 (2008) https://doi.org/10.1002/pen.21088
  8. C. L. Sim$\'{o}$es, J. C. Viana, and A. M. Cunha, J. Appl. Polym. Sci., 112, 345 (2009) https://doi.org/10.1002/app.29425
  9. D. Wu, Y. Zhang, M. Zhang, and W. Zhou, Eur. Polym. J., 44, 2171 (2008) https://doi.org/10.1016/j.eurpolymj.2008.04.023
  10. D. R. Paul and C. B. Bucknall, Polymer Blends, Wiely, New York, 2000
  11. L. A. Utracki, Polymer Alloys and Blends, Hanser, Munich, 1989
  12. S. Aslan, L. Calandrelli, P. Laurirenzo, M. Malinconico, and C. Migliaresi, J. Mater. Sci: Mater. Med., 35, 1615 (2000)
  13. G. Maglio, M. Malinconico, A. Migliozzi, and G. Groeninckx, Macromol. Chem. Phys., 205, 946 (2004) https://doi.org/10.1002/macp.200300150
  14. W. Baker, C. Scott, and G. H. Gu, Reactive Polymer Blending, Hanser, Munich, 2001
  15. M. J. Lee, M. C. Lee, and P. G. Shin, Polymer(Korea), 22, 93 (1998)
  16. S. Lee, Y. Lee, and J. W. Lee, Macromol. Res., 15, 44 (2007) https://doi.org/10.1007/BF03218751
  17. B. S. Ko, J. Shin, J. Y. Sohn, Y. C. Nho, and P. H. Kang, Polymer(Korea), 33, 268 (2009)
  18. K. R. Park and Y. C. Nho, Polymer(Korea), 29, 91 (2005)
  19. J. I. Kim, S. H. Park, P. H. Kang, and Y. C. Nho, Polymer (Korea), 25, 657 (2001)
  20. I. H. Cho, P. H. Kang, Y. M. Lim, J. H. Choi, T. S. Hwang, and Y.C. Nho, Polymer(Korea), 31, 512 (2007)
  21. Y. C. Nho, J. L. Garnett, P. A. Dworjanyn, and H. C. Pyun, Polymer(Korea), 16, 115 (1992)
  22. H. C. Pyun and Y. C. Nho, Polymer(Korea), 15, 425 (1991)
  23. M. M. Hasen, Polym. Eng. Sci., 48, 373 (2008) https://doi.org/10.1002/pen.20959
  24. G. Zhu, S. Xu, J. Wang, and L. Zhang, Rad. Phys. Chem., 75, 443 (2006) https://doi.org/10.1016/j.radphyschem.2005.10.004
  25. Y. Kodama, L. D. B. Machado, C. Giovedi, and K. Nakayama, Nucl. Instr. Meth. in Phys. Reser. B, 265, 294 (2007) https://doi.org/10.1016/j.nimb.2007.08.062
  26. R. J. Woods and A. K. Pikaev, Applied Radiation Chemistry Radiation Processing, John Wiely, New York, 1994
  27. J. J. Meister, Polymer Modification: Principles, Techniques, and Applications, Marcell Dekker, New York, 2000
  28. D. J. Leonard, L. T. Pick, D. F. Farrar, G. R. Dickson, J. F. Orr, and F. J. Buchanan, J. Biomed. Mater. Res. -A, 89, 567 (2009)
  29. M. C. Gupta and V. G. Deshmukh, Polymer, 24, 827 (1983) https://doi.org/10.1016/0032-3861(83)90198-2
  30. B. Y. Shin, K. S. Kang, G. S. Jo, D. H. Han, J. S. Song, S. I. Lee, T. J. Lee, and B. K. Kim, Polymer(Korea), 31, 269, (2007)
  31. D. Darwis, K. Nishimura, H. Mitomo, and F. Yoshii, J. Appl. Polym. Sci., 74, 1815 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991114)74:7<1815::AID-APP25>3.0.CO;2-X
  32. F. Yoshii, D. Darwis, H. Mitomo, and K. Makuuchi, Rad. Phys. Chem., 57, 417 (2000) https://doi.org/10.1016/S0969-806X(99)00449-1
  33. H. M. Lee and O. O. Park, J. Rheol., 38, 1405 (1994) https://doi.org/10.1122/1.550551
  34. B. Y. Shin, R. Narayan, D. H. Han, K. S. Kang, and S. R. K. C. Chalasani, 'Rheological Properties of PLA Modified by Electron Beam Irradiation', in Frontiers in Polymer Science, International Symposium, 7-9 June 2009, Congress Centrum Mainz, Germany
  35. B. J. Jeong and M. Xanthos, Polym. Eng. Sci., 47, 244 (2007) https://doi.org/10.1002/pen.20699
  36. L. Wild, R. Ranganath, and D. C. Knobeloch, Polym. Eng. Sci., 16, 811 (1976) https://doi.org/10.1002/pen.760161206
  37. H. B. Parmar, R. K. Gupta, and S. N. Bhattacharya, Polym. Eng. Sci., in print (2009)
  38. R. Wang, S. Wang, Y. Zhang, C. Wan, and P. Ma, Polym. Eng. Sci., 49, 26(2009) https://doi.org/10.1002/pen.21210
  39. Y. Zhang, D. Wu, M. Zhang, and C. Xu, Polym. Eng. Sci., in print (2009)
  40. E. S. Kim, B. C. Kim, and S. H. Kim, J. Polym. Sci. Part B: Polym. Phys., 42, 939 (2004) https://doi.org/10.1002/polb.10685
  41. Y. Liu, Y. Huang, C. Zhang, J. Hou, and X. Zhang, Polym. Eng. Sci., in print (2009)