Effect of Water Temperature and Body Weight on Oxygen Consumption Rate of Starry Flounder Platichthys stellatus

강도다리 Platichthys stellatus의 산소 소비율에 미치는 수온과 체중의 영향

  • Oh, Sung-Yong (Marine Living Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Jang, Yo-Soon (Marine Living Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Noh, Choong Hwan (East Sea Environment Research Department, Korea Ocean Research & Development Institute) ;
  • Choi, Hee Jung (Marine Living Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Myoung, Jung-Goo (Marine Living Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Kim, Chong-Kwan (Marine Living Resources Research Department, Korea Ocean Research & Development Institute)
  • 오승용 (한국해양연구원 해양생물자원연구부) ;
  • 장요순 (한국해양연구원 해양생물자원연구부) ;
  • 노충환 (한국해양연구원 동해특성연구부) ;
  • 최희정 (한국해양연구원 해양생물자원연구부) ;
  • 명정구 (한국해양연구원 해양생물자원연구부) ;
  • 김종관 (한국해양연구원 해양생물자원연구부)
  • Received : 2008.09.26
  • Accepted : 2009.03.02
  • Published : 2009.03.31

Abstract

The effect of water temperature (T) and body weight (W) on oxygen consumption of fasted starry flounder Platichthys stellatus was investigated in order to assess the metabolic response of this species at given conditions. The oxygen consumption rate (OCR) was measured under six different water temperatures (4, 7, 10, 13, 16 and $19^{\circ}C$) and at two different body weights (mean weight of fry group : 1.5 g; fingerling group : 37.4 g) at an interval of 5 minutes for 24 hours using a continuous flow-through respirometer. In each treatment three replicates were set up and a total 540 fish in fry groups and 90 fish in fingerling groups were used. The OCRs increased with increase of water temperature in both groups (p<0.001). Mean OCRs at 4, 7, 10, 13, 16 and $19^{\circ}C$ were 1386.0, 1601.7, 1741.0, 1799.2, 2239.1 and $2520.3mg\;O_2\;kg\;fish^{-1}\;h^{-1}$ in fry groups, and 83.8, 111.4, 126.3, 147.1, 187.7 and $221.3mg\;O_2\;kg\;fish^{-1}\;h^{-1}$ in fingerling groups, respectively. The OCRs decreased with increasing body weights at six different water temperatures (p<0.001). The relationship between water temperature and body weight is described by the following equation : OCR=1520.91+40.85T-49.22W ($r^2=0.95$, p<0.001). The energy loss by metabolic response increased with an increase in water temperature and a decrease in body weight (p<0.001). Mean energy loss rates by oxygen consumption at 4, 7, 10, 13, 16 and $19^{\circ}C$ were 907.9, 1046.5, 1141.6, 1177.0, 1467.3 and $1650.1kJ\;kg\;fish^{-1}\;d^{-1}$ in fry groups and 54.8, 73.0, 82.9, 96.2, 122.9 and $144.6kJ\;kg\;fish^{-1}\;d^{-1}$ in fingerling groups, respectively. The $Q_{10}$ values of fingerling groups were higher than those of fry groups at given temperature ranges. The $Q_{10}$ values at $4{\sim}7^{\circ}C$, $7{\sim}10^{\circ}C$, $10{\sim}13^{\circ}C$, $13{\sim}16^{\circ}C$ and $16{\sim}19^{\circ}C$ were 1.62, 1.32, 1.12, 2.07 and 1.48 in fry groups, and 2.59, 1.52, 1.67, 2.25 and 1.73 in fingerling groups, respectively.

강도다리의 수온과 체중에 따른 대사 반응을 조사하기 위해 절식한 자어(습중량, $1.5{\pm}0.4g$, 540마리)와 대형어 ($37.4{\pm}2.3g$, 90마리)를 대상으로 여섯 가지 수온(4, 7, 10, 13, 16 그리고 $19^{\circ}C$)에 따라 유수식 형태의 호흡실을 이용하여 24시간 동안 5분 간격(3반복)으로 산소 소비율(oxygen consumption rate, OCR)을 측정하였다. 수온과 체중 그리고 두 인자의 상호작용 모두가 강도다리의 산소 소비율에 유의한 영향을 미쳤다(p<0.001). 수온 상승에 따라 강도다리 자어와 치어의 산소 소비율은 모두 유의적으로 증가하였다(p<0.001). 수온 4, 7, 10, 13, 16 그리고 $19^{\circ}C$에서의 시간당 평균 산소 소비율은 자어의 경우 각각 1386.0, 1601.7, 1741.0, 1799.2, 2239.1 그리고 $2520.3mg\;O_2\;kg\;fish^{-1}\;h^{-1}$이었고, 치어의 경우 각각 83.8, 111.4, 126.3, 147.1, 187.7 그리고 $221.3mg\;O_2\;kg\;fish^{-1}\;h^{-1}$이었다. 실험 수온 조건에서 체중 증가에 따라 산소 소비율은 유의하게 감소하였다(p<0.001). 강도다리의 산소 소비율에 미치는 수온(T)과 체중(W)의 상관관계는 OCR=1520.91+40.85T-49.22W ($r^2=0.95$, p<0.001)이었다. 대사 작용에 의한 에너지 손실은 수온 증가와 체중 감소에 따라 증가하였다(p<0.001). 수온 4, 7, 10, 13, 16 그리고 $19^{\circ}C$에서 일간 평균 에너지 손실은 자어의 경우 각각 907.9, 1046.5, 1141.6, 1177.0, 1467.3 그리고 $1650.1kJ\;kg\;fish^{-1}\;d^{-1}$이었고, 치어의 경우 각각 54.8, 73.0, 82.9, 96.2, 122.9 그리고 $144.6kJ\;kg\;fish^{-1}\;d^{-1}$이었다. $Q_{10}$ 값은 $4{\sim}7^{\circ}C$, $7{\sim}10^{\circ}C$, $10{\sim}13^{\circ}C$, $13{\sim}16^{\circ}C$ 그리고 $16{\sim}19^{\circ}C$ 구간에서 자어의 경우 각각 1.62, 1.32, 1.12, 2.07 그리고 1.48이었고, 치어의 경우 2.59, 1.52, 1.67, 2.25 그리고 1.73이었다.

Keywords

Acknowledgement

Supported by : 한국해양연구원

References

  1. 변순규∙정민환∙이종하∙이배익∙구학동∙박상언∙김이청∙장영진. 2008. 수온에 따른 강도다리 Platichthys stellatus의 산소소비 리듬. 한국수산학회지, 41: 113-118. https://doi.org/10.5657/kfas.2008.41.2.113
  2. 오승용∙노충환. 2006. 수온과 광주기에 따른 볼락, Sebastes inermis치어의 산소 소비율. 한국양식학회지, 19: 210-215.
  3. 오승용∙노충환∙명정구∙조재윤. 2007. 조피볼락, Sebastes schlegeli의 산소 소비율에 미치는 수온과 체중의 영향. 한국어류학회지, 19: 1-7.
  4. Adams, S.M. and J.E. Breck. 1990. Bioenergetics. In: Schreck, C.B. and P.B. Moyle (eds.), Methods for Fish Biology. American Fisheries Society, Bethesda, MA, pp. 389-415.
  5. Bartell, S.M., J.E. Breck, R.H. Gardner and A.L. Brenket. 1986. Individual parameter perturbation and error analysis of fish bioenergetics models. Can. J. Fish. Aquat. Sci., 43: 160-168. https://doi.org/10.1139/f86-018
  6. Brett, J.R. and T.D.D. Groves. 1979. Physiological energetics. In: Hoar, W.H., Randall, D.J. and Brett, J.R. (eds.), Bioenergetics and Growth. Fish Physiology. vol. 8. Academic Press, New York, pp. 279-352.
  7. Cai, Y. and R.C. Summerfelt. 1992. Effects of temperature and size on oxygen consumption and ammonia excretion by walleye. Aquaculture, 104: 127-138. https://doi.org/10.1016/0044-8486(92)90143-9
  8. Dabrowski, K.R. 1986. Active metabolism in larval and juvenile fish: ontogenetic changes, effect of water temperature and fasting. Fish Physiol. Biochem., 1: 125-144. https://doi.org/10.1007/BF02290254
  9. Das, T., A.K. Pal, S.K. Chakraborty, S.M. Manush, N.P. Sahu and S.C. Mukherjee. 2005. Thermal tolerance, growth and oxygen consumption of Libeo rohita fry (Hamilton, 1822) acclimated to four temperatures. J. Ther. Biol., 30: 378-383. https://doi.org/10.1016/j.jtherbio.2005.03.001
  10. Dalla Via, J., P. Villani, E. Gasteiger and H. Niederstätter. 1998. Oxygen consumption in sea bas fingerling Dicentrarchus labrax exposed to acute salinity and temperature changes: metabolic basis for maximum stocking density estimations. Aquaculture, 169: 303-313. https://doi.org/10.1016/S0044-8486(98)00375-5
  11. Degani, G., M.L. Gallagher and A. Meltzer. 1989. The influence of body size and temperature on oxygen consumption of the European eel, Anguilla anguilla. J. Fish Biol., 34: 19-24. https://doi.org/10.1111/j.1095-8649.1989.tb02953.x
  12. Elliot, J.M. and W. Davison. 1975. Energy equivalents of oxygen consumption in animal energetics. Oecologia, 19: 195-201. https://doi.org/10.1007/BF00345305
  13. Fonds, M., R. Cronie, A.D. Vethaak and P. Van Der Puly. 1992. Metabolism, food consumption and growth of plaice (Pleuronectes platessa) and flounder (Platichthys flesus) in relation to fish size and temperature. Neth. J. Sea Res., 29: 127-143. https://doi.org/10.1016/0077-7579(92)90014-6
  14. Forsberg, O.L. 1994. Modeling oxygen consumption rates of postsmolt Atlantic salmon in commercial-scale landbased farms. Aquac. Int., 2: 180-196.
  15. Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. In: W.S. Hoar and D.J. Randall. (eds.), Fish Physiology. Academic Press, New York, pp. 1-98.
  16. Jobling, M. 1982. A study of some factors affecting rates of oxygen consumption of plaice, Pleuronectes platessa L. J. Fish Biol., 20: 501-516.
  17. Kaushik, S.J. 1998. Nutritional bioenergetics and estimation of waste production in non-salmonids. Aqua. Liv. Res., 11:211-217. https://doi.org/10.1016/S0990-7440(98)89003-7
  18. Kita, J., S. Tsuchida and T. Setoguma. 1996. Temperature preference and tolerance and oxygen consumption of the marbled rockfish, Sebastiscus marmoratus. Mar. Biol., 125: 467-471.
  19. Lyytikäinen, T. and M. Jobling. 1998. The effects of temperature fluctuations on oxygen consumption and ammonia excretion of underyearling Lake Inari Arctic charr. J. Fish Biol., 52:1186-1198.
  20. Mitsunaga, Y., W. Sakamoto, N. Arai and A. Kasai. 1999. Estimation of the metabolic rate of wild red sea bream Pagrus major in different water temperatures. Nippon Suisan Gakk., 65: 48-54. https://doi.org/10.2331/suisan.65.48
  21. Peck, M.A., L.J. Buckley and D.A. Bengtson. 2005. Effects of temperature, body size and feeding on rates of metabolism in young-of-the-year haddock. J. Fish Biol., 66: 911-923. https://doi.org/10.1111/j.0022-1112.2005.00633.x
  22. Spanopoulos-Hernández, M., C.A. Martínez-Palacios, R.C. Vanegas-Pérez, C. Rosas and L.G. Ross. 2005. The combined effects of salinity and temperature on the oxygen consumption of juvenile shrimps Litopenaeus stylirostris (Stimpson,1874). Aquaculture, 244: 341-348. https://doi.org/10.1016/j.aquaculture.2004.11.023
  23. Withey, K.G. and R.L. Saunders. 1973. Effect of reciprocal photoperiod regime on standard rate of oxygen consumption of postsmolt Atlantic salmon (Salmo salar). J. Fish. Res. Bd. Can., 30: 1898-1900 https://doi.org/10.1139/f73-307
  24. Wuenschel, M.J., A.R. Jugovich and J.A. Hare. 2005. Metabolic response of juvenile gray snapper (Lutjanus griseus) to temperature and salinity: Physiological cost of different environments. J. Exp. Mar. Biol. Ecol., 321: 145 -154. https://doi.org/10.1016/j.jembe.2005.01.009
  25. Wuenschel, M.J., R.G. Werner and D.E. Hoss. 2004. Effect of body size, temperature and salinity on the routine metabolism of larval and juvenile spotted seatrout. J. Fish Biol., 64: 1088-1102. https://doi.org/10.1111/j.1095-8649.2004.00374.x