Impact of Climate Change on Water Cycle and Soil Loss in Daecheong Reservoir Watershed

기후변화에 따른 대청호 유역의 물 순환 및 토양 유실량 영향

  • Ye, Lyeong (Department of Environmental Engineering, Chungbuk National University) ;
  • Chung, Se Woong (Department of Environmental Engineering, Chungbuk National University) ;
  • Oh, Dong Geun (Department of Environmental Engineering, Chungbuk National University) ;
  • Yoon, Sung Wan (Department of Environmental Engineering, Chungbuk National University)
  • 예령 (충북대학교 환경공학과) ;
  • 정세웅 (충북대학교 환경공학과) ;
  • 오동근 (충북대학교 환경공학과) ;
  • 윤성완 (충북대학교 환경공학과)
  • Received : 2009.03.11
  • Accepted : 2009.09.29
  • Published : 2009.11.30

Abstract

The study was aimed to assess the expected impact of climate change on the water cycle and soil losses in Daecheong Reservoir watershed, Korea using the Soil and Water Assessment Tool (SWAT) that was validated for the watershed in a previous study. Future climate data including precipitation, temperature and humidity generated by introducing a regional climate model (Mesoscale Model Version 5, MM5) to dynamically downscale global circulation model (European Centre Hamburg Model Version 4, ECHAM4) were used to simulate the hydrological responses and soil erosion processes in the future 100 years (2001~2100) under the Special Report on Emissions Scenario (SRES) A1B. The results indicated that the climate change may increase in the amount of surface runoff and thereby sediment load to the reservoir. Spatially, the impact was relatively more significant in the subbasin Bocheongcheon because of its lower occupation rate of forest land compared to other subbasins. Seasonally, the increase of surface runoff and soil losses was more significant during late summer and fall season when both flood control and turbidity flow control are necessary for the reservoir and downstream. The occurrence of extreme turbidity flow events during these period is more vulnerable to reservoir operation because the suspended solids that remained water column can be resuspended by vertical mixing during winter turnover period. The study results provide useful information for the development of adaptive management strategy for the reservoir to cope with the expected impact of future climate change.

Keywords

Acknowledgement

Supported by : 수자원의 지속적 확보기술개발사업단

References

  1. 국립기상연구소(2005). 기후변화협약대응 지역기후시나리오 활용기술 개발(I)
  2. 국립기상연구소(2006). 기후변화협약대응 지역기후시나리오 활용기술 개발(II)
  3. 국립기상연구소(2007). 기후변화협약대응 지역기후시나리오 활용기술 개발(III)
  4. 권영아, 권원태, 부경온, 최영은(2007). A1B 시나리오 자료를 이용한 우리나라 아열대 기후구 전망. 대한지리학회지, 42(3), pp. 355-367
  5. 기상청(2009). http://www.kma.go.kr/
  6. 김병식, 김형수, 서병하, 김남원(2004). 기후변화가 용담댐유역의 유출에 미치는 영향. 한국수자원학회논문집, 37(2),pp. 185-193
  7. 김영오(1998). 기후변화를 고려한 수자원 관리 기법. 한국수자원학회논문집, 31(4), pp. 407-413
  8. 김웅태, 이동률, 유철상(2004). 기후변화에 따른 대청댐 유역의 유출 영향 분석. 한국수자원학회논문집, 37(4), pp.305-314 https://doi.org/10.3741/JKWRA.2004.37.4.305
  9. 배덕효, 정일원, 권원태(2007a). 수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(I). 한국수자원학회논문집, 40(3), pp. 191-204 https://doi.org/10.3741/JKWRA.2007.40.3.191
  10. 배덕효, 정일원, 권원태(2007b). 수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(II). 한국수자원학회논문집, 40(3), pp. 205-214 https://doi.org/10.3741/JKWRA.2007.40.3.205
  11. 배덕효, 정일원, 이병주(2007c). A2 시나리오에 따른 국내수자원의 변동성 전망. 한국수자원학회논문집, 40(12),pp. 921-930 https://doi.org/10.3741/JKWRA.2007.40.12.921
  12. 신사철(2000). 기후변화 시나리오에 의한 하천 유황의 해석.한국수자원학회논문집, 33(5), pp. 623-634
  13. 안소라, 이용준, 박근애, 김성준(2008). 미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석. 대한토목학회논문집, 28(2B), pp. 215-224
  14. 안소라, 박민지, 박근애, 김성준(2009). 기후변화가 경안천유역의 수문요소에 미치는 영향 평가. 한국수자원학회논문집, 42(1), pp. 33-50 https://doi.org/10.3741/JKWRA.2009.42.1.33
  15. 안재현, 유철상, 윤용남(2001). GCM 결과를 이용한 지구온난화에 따른 대청댐 유역의 수문환경 변화 분석. 한국수자원학회논문집, 34(4), pp. 335-345
  16. 예령, 정세웅, 이흥수, 윤성완, 정희영(2009). SWAT 모형을 이용한 대청댐 유역의 기후인자에 따른 유출 및 유사량 민감도 평가. 수질보전 한국물환경학회지, 25(1), pp. 7-17
  17. 윤용남, 유철상, 이재수, 안재현(1999). 지구온난화에 따른 홍수 및 가뭄 발생빈도의 변화와 관련하여: 2. 지구온난화에 따른 일강우량 분포의 변화 추청. 한국수자원학회 논문집, 32(6), pp. 627-636
  18. 이용준, 안소라, 강부식, 김성준(2008). SWAT 모형을 이용한 미래 기후변화 및 토지이용 변화에 따른 안성천 유역수문-수질 변화 분석(II). 대한토목학회논문집, 28(6B), pp.665-673
  19. 황준식, 정대일, 이재경, 김영오(2007). 기후변화 영향평가를 위한 월 물수지모형의 적용성 검토. 한국수자원학회논문집, 40(2), pp. 147-158 https://doi.org/10.3741/JKWRA.2007.40.2.147
  20. Adams, R. M., Rosenzweig, C., Peart, R. M., Ritchie, J. T.,McCarl, B. A., Gler, J. D., Curry, R. B., Jones, J. W.,Boote, K. J., and Allen, Jr., L. H. (1990). Grobal climate change and US agriculture. Nature, 345(6272), pp. 219-224 https://doi.org/10.1038/345219a0
  21. Bates, B. C., Kundzewicz, Z. W., Wu, S., and Palutikof, J. P.(eds.) (2008). Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, pp. 210
  22. Bouraoui, F., Galbiati, L., and Bidoglio, G. (2002). Climate change impacts on nutrient loads in the Yorkshire Ouse catchment (UK). Hydrology and Earth System Sciences, 6(2), pp. 197-209 https://doi.org/10.5194/hess-6-197-2002
  23. Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P.,and Palmer, R. N. (2004). The effects of climate change on the hydrology and water resources of the colorado river basin. Climate Change, 62(1-3), pp. 337-3634 https://doi.org/10.1023/B:CLIM.0000013684.13621.1f
  24. Easterling, W. E., Rosenburg, N. J., McKenney, M. S., Jones,C. A., Dyke, P. T., and Williams, J. R. (1992). Preparing the Erosion productivity impact calculator (EPIC) model to simulate crop response to climate change and the direct effect of $CO_2$. Agricultural and Forest Meteorology, 59, pp. 17-34 https://doi.org/10.1016/0168-1923(92)90084-H
  25. Echhardt, K. and Ulbrich, U. (2003). Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology, 284, pp. 24-252 https://doi.org/10.1016/j.jhydrol.2003.08.005
  26. Fries-christensen, E. and Lassen, K. (1991). Length of the solar cycle: An indicator solar activity closely associated with climate. Science, 254, pp. 698-700 https://doi.org/10.1126/science.254.5032.698
  27. Gyalistras, D., Storch, H. V., and Beniston, M. (1994). Linking GCM simulated climatic changes to ecosystem models: Case studies of statistical downscaling in the Alps. Climate Research, 4(3), pp. 167-191
  28. Hanratty, M. P. and Stefan, H. G. (1998). Simulating climate change effects in a Minnesota agricultural watershed. Journal of Environmental Quality, 27(6), pp. 1524-1532 https://doi.org/10.2134/jeq1998.00472425002700060032x
  29. Imbrie, J. and Imbrie, J. Z. (1980). Modeling the climatic response to orbital variations. Science, 207, pp. 943-953 https://doi.org/10.1126/science.207.4434.943
  30. IPCC (2001). Climate change 2001 : The Scientific Basis, IPCC Contribution of Working Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
  31. IPCC (2007). Climate change 2007 : The Scientific Basis, IPCC Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
  32. Judith, L., Juerg, B., and Raymond, B. (1995). Reconstruction of solar irradiance since 1610: Implications for climate chage. Geophysical Research Letters, 22(23), pp. 3195-3196 https://doi.org/10.1029/95GL03093
  33. Kirchner, I., Stenchikov, G. L., Graf, H. F., Robock, A., and Antuna, J. C. (1999). Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption. Journal of Geophysical Research, 104(16), pp. 19039-19055 https://doi.org/10.1029/1999JD900213
  34. Krysanova, V., Hatterman, F., and Wechsung, F. (2005). Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessment. Hydrological Processes, 19(3), pp. 763-783 https://doi.org/10.1002/hyp.5619
  35. Legutke, S. and Maire-Reimer, E. (1999). Climatology of the HOPE-G Global Ocean General Circulation Model. Technical report No. 21, German Climate Computre Centre (DKRZ), Hamburg, Germany, pp. 90
  36. Lettenmaier, D. P. and Gan, T. Y. (1990). Hydrologic sensitivities of the Sacramento-San Joaquin river basin, California, to global warming. Water Resources Research, 26(1), pp. 69-86 https://doi.org/10.1029/WR026i001p00069
  37. Matalas, N. C. (1967). Mathematical assessment of synthetic hydrology. Water Resource Research, 3(4). pp. 937-945 https://doi.org/10.1029/WR003i004p00937
  38. Morison, J. I. L. and Gifford, R. M. (1983). Stomatal sensitivity to carbon dioxide and humidity. Plant Physiology, 71(4), pp. 789-796 https://doi.org/10.1104/pp.71.4.789
  39. Muzik, I. (2001). Sensitivity of hydrologic system to climate change. Canadian Water Resources Journal, 26(2), pp. 233-253 https://doi.org/10.4296/cwrj2602233
  40. Nick, A. D. (1974). Stochastic generation of the occurrence, pattern, and location of maximum amount of daily rainfall. In Proc. Symp. Statistical Hydrology, pp. 154-171
  41. Olivera, F., Valenzuela, M., Srinivasan, R., Choi, J., Cho, H., Koka, S., and Agrawal, A. (2006). ArcGIS-SWAT: A Geodata Model and GIS Interface for SWAT, Journal of the American Water Resources Association, 42(2), pp. 295-309 https://doi.org/10.1111/j.1752-1688.2006.tb03839.x
  42. Petit, J. R., Basile, I., Leruyuet, A., Raynaud, D., Lorius, C., Jouzel, J., Stievenard, M., Lipenkou, V. Y., Barkov, N. I., Kudryachow, B. B., Davis, M., Saltman, E., and Kotlyakov, V. (1997). Four climate cycles in the Vostok ice core. Nature, 399, pp. 429-436 https://doi.org/10.1038/339429a0
  43. Richardson, C. W. (1981). Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resource Research, 17(1), pp. 182-190 https://doi.org/10.1029/WR017i001p00182
  44. Richardson, C. W. and Wright, D. A. (1984). WGEN: A Model for Generating Daily Weather Variables. U. S. Department of Agriculture, Agricultural Research Service
  45. Risbey, J. S. and Entekhabi, D. (1996). Observed Sacremento Basin streamflowresponse to precipitation and temperature changes and its relevance to climate impact studies. Journal of Hydrology, 184, pp. 209-223 https://doi.org/10.1016/0022-1694(95)02984-2
  46. Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dumenil, L., Esch, M., Girogetta, M., Schlese, U., and Schulzweide, U. (1996). The Atmospheric Generation Circulation Model ECHAM-4: Model Description and Simulation of Present-day Climate. Max-Planck-Institute for Meteorology Report No. 218
  47. Sharpley, A. N. and Williams, J. R. (1990). EPIC, Erosion/Productivity Impact Calculator, 1. Model documentation. U.S.Department of Agriculture, Agricultural Research Service,Tech. Bull. 1768
  48. Srikanthan, R. and McMahon, T. A. (2001). Stochastic generation of annual monthly and daily climate data: a review.Hydrology and Earth Systems Sciences, 5(4), pp. 653-670 https://doi.org/10.5194/hess-5-653-2001
  49. Stone, M. C., Hotchkiss, R. A., and Mearnes, L. O. (2003).Water yield response to high and low spatial resolution climate change scenarios in the Missouri River Basin. Geophysical Research Letters, 30(4), pp. 351-354
  50. Thomson, A. M., Brown, R. A., Rosenberg, N. J., Srinivasan, R., and Izaurralde, R. C. (2005). Climate change impacts for the conterminous USA: An integrated assessment, Part 4: Water resource. Climate Change, 69(1), pp. 67-88 https://doi.org/10.1007/s10584-005-3610-y
  51. Varanou, E. E., Gkouvatsou, E. B., and Mimikou, M. (2002). Quantity and quality integrated catchment modeling under climatic change with use of Soil and Water Assessment Tool model. Journal of Hydrology, 7(3), pp. 228-244 https://doi.org/10.1061/(ASCE)1084-0699(2002)7:3(228)
  52. Weingart. P., Engels, A., and Pansegrau, P. (2000). Risks of communication: Discourses on climate change in science, politics, and the mass media. Public Understanding of Science, 9(3), pp. 261-283 https://doi.org/10.1088/0963-6625/9/3/304
  53. Williams, J. R. (1995). Chapter 25. The EPIC Model, In Computer Models of Watershed Hydrology, Water Resources Publications, Highlands Ranch, CO, pp. 909-1000
  54. Whitfield, P. F. and Cannon, A. J. (2000). Recent variation in climate and hydrology in Canada. Canadian Water Resources Journal, 25(1), pp. 19-65 https://doi.org/10.4296/cwrj2501019
  55. Xu, C. Y. and Singh, V. P. (2004). Review on regional water resources assessment models under stationary and changing climate. Water Resources Management, 18, pp. 591-612 https://doi.org/10.1007/s11269-004-9130-0